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1. INTRODUCTION

Lipids play an important role in physiology and pathophysiol-
ogy of living systems. Until a few decades ago, the number of
lipid molecules that were chemically characterized was a few
hundred at most, and they were cataloged in monographs and
compendia.1 Since the advent of the era of the genome and the
proteome, there has been increasing recognition that other
macromolecules such as lipids and polysaccharides in living
systems display considerable structural diversity, and systematic
efforts are under way to identify, characterize, and catalog these
molecules. With mass spectrometric techniques coming of age,
several thousand distinct molecular species have been identified
from living species, and the roles of several of these are beginning
to be characterized.2 Unlike genes and proteins, whose defined
alphabets provide the framework for ontologies and classification
at the sequence level, lipids and polysaccharides have been
characterized for the large part by popular names, with no
foundations for systematic classification.

The past two decades have witnessed two major advances in
lipid biology. First, mass spectrometry has enabled the identifica-
tion of thousands of lipidmolecular species from cells and tissues,
and this has pointed to the important need for developing a
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systematic ontology that can rationally name and catalog the
molecules. Second, the ability to investigate the functional roles
of lipid molecules through systematic phenotypic studies has led
to the identification of lipids as extremely important players in
physiology and pathophysiology of living species.3 In combina-
tion with proteins and nucleic acids, lipids are integrally involved
in biochemical networks that lead to phenotypes such as home-
ostasis, differentiation, and death of cells and tissues. Any
approach to systems characterization of living systems, of ne-
cessity, has to include lipids along with other macromolecules
and all complex cellular pathways involving lipid molecular
species. Systems biology is now extended in its scope to
identify biosynthetic and metabolic lipid networks, cellular
signaling networks that explicitly include lipid molecules and
transcriptional and epigenetic networks where lipids play an
integral role.4

Several large-scale projects to characterize lipids and their
functional roles have been initiated as exemplified by the LIPID
MAPS5 effort. The LIPIDMAPS is an exemplary systems biology
project that measures cell-wide lipid changes in an attempt to
reconstruct biochemical pathways associated with lipid proces-
sing and signaling. The cell-wide measurements of components
of these pathways include mass spectrometric measurements of
lipid changes in response to a stimulus in mammalian cells,

changes in transcription profiles in response to a stimulus, and in
select cases proteomic changes in response to a stimulus. Figure 1
shows a schematic of the LIPID MAPS experiments related to
different lipid categories/pathways and the subsequent proces-
sing of the experimental data generated. Network reconstruction
efforts rely on organization, analysis, and integration of these
data, and this requires a strong bioinformatics and systems
biology effort. The former has to include development of a
systematic and universal classification and nomenclature system,
design and development of lipid, lipid�gene, and lipid�protein
databases with appropriate functional annotations, and develop-
ment of efficient query and analysis systems that can be broadly
useful to the biology research community. The latter has to
include methods for analysis of large-scale lipid measurements in
cells, reconstruction of lipid metabolic and biosynthetic path-
ways, and quantitative models of lipid fluxes in cells under varied
perturbations. In this review, we provide a comprehensive
summary of extant developments in lipid bioinformatics and
systems biology and discuss the outlook for the future integration
of lipidomics into cellular and organismic biology. The sections
that follow are delineated into the informatics approaches
specific to lipid biology followed by an overview and exemplary
approach to analysis of large-scale lipidomic data toward a
systems description of mammalian cells.

Figure 1. Overview of the process of performing a quantitative lipid analysis of a macrophage cell sample (in this example, a time-course experiment
using bone marrow derived macrophages). Extraction methods, LC/GC purification methods, MS acquisition strategies, and quantitative standard
approaches are optimized for each lipid class.2,70,72
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2. CLASSIFICATION, ONTOLOGY, NOMENCLATURE,
AND STRUCTURE REPRESENTATION OF LIPID
MOLECULES

The first step toward classification of lipids is the establish-
ment of an ontology that is extensible, flexible, and scalable. One
must be able to classify, name, and represent these molecules in a
logical manner which is amenable to data basing and computa-
tional manipulation. Lipids have been loosely defined as biolog-
ical substances that are generally hydrophobic in nature and in
many cases soluble in organic solvents.6 These chemical features
are present in a broad range of molecules such as fatty acids,
phospholipids, sterols, sphingolipids, terpenes, and others. In
view of the fact that lipids comprise an extremely heterogeneous
collection of molecules from a structural and functional stand-
point, it is not surprising that there are significant differences with
regard to the scope and organization of current classification
schemes.

2.1. Classification, Ontology, and Nomenclature
To address the lack of a consistent classification and nomen-

clature methodology for lipids, LIPID MAPS consortium mem-
bers have developed a comprehensive classification system for
lipids.7 The consortium has taken a more chemistry-based
approach and defines lipids as hydrophobic or amphipathic small
molecules that may originate entirely or in part by carbanion-
based condensations of thioesters (such as fatty acids and
polyketides) and/or by carbocation-based condensations of
isoprene units (such as prenols and sterols). Figure 2 shows
the mechanisms of lipid biosynthesis.8 On the basis of this
classification system, lipids have been divided into eight cate-
gories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids,

sterol lipids, prenol lipids, saccharolipids, and polyketides. Each
category is further divided into classes and subclasses. Addition-
ally, following the existing rules and recommendations proposed
by the International Union of Biochemistry and Applied Che-
mists and the International Union of Biochemistry and Molec-
ular Biology (IUPAC-IUBMB) Commission on Biochemical
Nomenclature, a consistent nomenclature scheme has also been
developed to provide systematic names for various classes and
subclasses of lipids.7

All lipids in the LIPIDMAPS Structure Database (LMSD) are
classified and annotated using this comprehensive classification
and nomenclature system developed by the LIPID MAPS
consortium.

2.2. Structure Representation
Currently, different members of the lipids community draw

lipid structures in distinct ways. The same lipid structure in one
lipid database can appear quite different in another database.9

Moreover, large and complex lipids are rather difficult to draw
manually, which leads to proliferation of shorthand and other
abbreviations to represent lipid structures. To address these
issues, the LIPID MAPS consortium proposed a consistent
framework for representing lipid structures.7,10 In general, the
acid/acyl group or its equivalent is drawn on the right side and
the hydrophobic chain on the left. A number of structurally
complex lipids—acylaminosugar glycans, polycyclic isoprenoids,
and polyketides—cannot be drawn using these simple rules;
these structures are drawn using commonly accepted representa-
tions. Structures of all lipids in LMSD adhere to the structure
drawing rules proposed by the LIPID MAPS consortium.
Figure 3 shows representative structures for each lipid category.

Figure 2. Mechanisms of lipid biosynthesis. Biosynthesis of ketoacyl- and isoprene-containing lipids proceeds by carbanion- and carbocation-mediated
chain extension, respectively.8 Reprinted with permission from ref 8. Copyright 2011 Elsevier Ltd.
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2.2.1. Structural Representation of Positional Isomers.
LIPID MAPS core laboratories are engaged in identification,
characterization, and quantification of known and new lipids
using liquid chromatography (LC) and mass spectrometry (MS)
experimental techniques. Information about various lipid stan-
dards developed for these experiments, along with the protocols
used, is available on the Lipidomics Gateway Web site.5 How-
ever, for some lipid categories such as glycerolipids and glycero-
phospholipids, it is not always straightforward to identify the
positions of radyl (acyl, alkyl, or alkenyl) hydrocarbon chains at
the sn carbons on the glycerol group. For example, MS/MS
experiments might be able to identify the presence of three radyl
hydrocarbon chains in a triacylglycerol, but their positions on the
glycerol backbone would be unknown. Combinatorial enumera-
tion of the three radyl chains at sn carbons leads to six possible
isomeric structures. These positional isomers are stored in
LMSD as one structure, and it is marked as a computationally
generated structure. Structures for all other positional isomers
are created on demand. To indicate the positional isomeric
nature of the structure, the suffix “iso” followed by the number
of isomers is also added to the abbreviation used as the common
name. For example, entry LMGL03010043 in LMSD, with
common name TG(16:0/16:1(9Z)/18:1(9Z))[iso6] and sys-
tematic name 1-hexadecanoyl-2-(9(Z)-hexadecenoyl)-3-(9(Z)-
octadecenoyl)-sn-glycerol, represents a lipid structure with six
possible positional isomers.
2.2.2. Structural Representation of Glycans in Glyco-

sphingolipids. For structural representation of lipids in neutral

and acidic glycosphingolipid main classes under the sphingolipid
category, LMSD uses the symbol and text nomenclature as
proposed by the Consortium for Functional Glycomics nomen-
clature committee on symbol and text representation of glycan
structures.11 In addition to using symbol and text representation
for glycans, the last four digits of the LIPIDMAPS identifier (LM
ID) are further subdivided into two groups: The first two
positions are used to differentiate glycan series within a subclass;
the last two positions represent a unique ID. For the first two
positions, only letters are used; the last two positions use
combinations of numbers and letters.

2.3. Structure Drawing
The structures of large and complex lipids are difficult to

represent in drawings, which leads to the use of many custom
formats that often generate more confusion than clarity among
members of the lipid research community. For example, usage of
the Simplified Molecular Line Entry Specification (SMILES)12

format to represent lipid structures, while being very compact
and accurate in terms of bond connectivity, valence, and stereo-
chemistry, does not contain information about atomic coordi-
nates and causes problems when the structure is rendered.
Different structure drawing tools end up generating different
2-dimensional structural layout corresponding to the same
SMILES string for a lipid molecule. The structure drawing step
is typically the most time-consuming process in creating molec-
ular databases of lipids. However, many classes of lipids lend
themselves to automated structure drawing paradigms, due to

Figure 3. Representative structures from each lipid category shown with LM ID, category name, category abbreviation, and systematic name. Reprinted
with permission from ref 10. Copyright 2007 Oxford University Press.
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their consistent 2-dimensional layout. The LIPID MAPS con-
sortium has developed and deployed a suite of structure drawing
tools13 that greatly increase the efficiency of data entry into lipid
structure databases and permit “on-demand” structure genera-
tion. A consistent format is chosen for representing lipid struc-
tures7,10 where, in the simplest case of the fatty acid derivatives,
the acid group (or equivalent) is drawn on the right and the
hydrophobic hydrocarbon chain is on the left. Similarly for
glycerolipids, glycerophospholipids, and sphingolipids, the radyl
hydrocarbon chains are drawn to the left and the head groups are
depicted on the right. This approach enables a more consistent,
error-free approach to drawing lipid structures and has been used
extensively in populating the LMSD, which currently contains
over 30 000 molecules.10

“Core” structures such as diacetylglycerol (glycerolipids) and
formic acid (fatty acyls) are represented as text-based MDL
MOL files,14 and these MOL file templates are then manipulated
to generate a variety of structures in MDL MOL files and
Structure Data Format (SDF) files containing that core and
other appropriate modifications (Figure 4). This manipulation is
carried out by command-line or online programs written in the
Perl15 programming language.

The Lipidomics Gateway Web site5 currently contains a suite
of structure drawing tools for the following lipid categories: fatty
acyls, glycerolipids, glycerophospholipids, cardiolipins, sphingo-
lipids, sterols, and sphingolipid glycans. The online layout
(Figure 5) consists of a core structure and pull-down menus
arranged in locations appropriate for that structure. For example,
in the case of the glycerophospholipid drawing tool, a central
glycerol core is surrounded by pull-down menus allowing the
end-user to choose from a list of head groups and sn1 and sn2 acyl
side chains. The list of acyl chains represents the more common
species found in mammalian cells and could easily be modified to
include additional chains. The selected lipid structure is then

generated via a server-side Perl script. The structure is rendered
in the Web browser as a Java-based MarvinView applet16 or
Jmol17 applet. Additionally, the structure may be viewed online
with the Chemdraw ActiveX/Plugin18 by users who have this
component installed on their system. Current versions of the
fatty acyl drawing tools are now capable of drawing chiral centers
and ring structures. Molecules with correct stereochemistry are
drawn by implementing the following method: (1) usage of a
custom-developed module to define atoms, bonds, and neigh-
bors; (2) a recursive algorithm which applies Cahn�Ingold�
Prelog (CIP)19 rules to a chiral center; (3) a scoring system to
estimate substituent priority to assign chirality.

Concurrently, a generalized lipid abbreviation format7 has been
developed which enables structures, systematic names, and ontol-
ogies to be generated automatically from a single source format.
Using this approach, a text file containing a list of lipid abbrevia-
tions may be submitted in batch mode to a drawing application
which then generates structures (asMDLMOL files or SDF files),
systematic names, and ontological information such as formula,
molecular weight, number of rings, number of double/triple
bonds, number of hydroxyl, amino, and keto groups, etc. In this
way, thousands of lipid structures have been generated in a
consistent fashion and deposited in the LMSD with considerable
savings in time. Furthermore, the associated ontological informa-
tion has been databased and used in various online search
interfaces where end-users may search for structures by the
presence (or number) of a functional group or other features.
2.3.1. Online Tools. A set of simple online interfaces have

been developed to enable an end-user to rapidly generate a
variety of lipid chemical structures, along with corresponding
systematic names and ontological information. These are avail-
able in the “Tools” section of the Lipidomics Gateway Web site.
The user interface is implemented using a combination of Perl
and Hypertext Preprocessor (PHP)20 scripts.

Figure 4. Overview of LIPIDMAPS structure data generationmethodology. Starting from specified abbreviations for lipids corresponding to the LIPID
MAPS format, the structure generation tools select an appropriate lipid structure template internally stored in the MDL MOL file format, attach
appropriate radyl chains, enumerate appropriate lipid structures, and generate an MDL MOL structure file or SDF file containing structural data along
with name and other ontology data. Reprinted with permission from ref 13. Copyright 2007 Oxford University Press.



6457 dx.doi.org/10.1021/cr200295k |Chem. Rev. 2011, 111, 6452–6490

Chemical Reviews REVIEW

The lipid categories covered are fatty acyls, glycerolipids,
glycerophospholipids (including cardiolipins as a special case),
sphingolipids, and sterols. Using the glycerophospholipid struc-
ture drawing tool as an example, the user selects from a pull-down
list of radyl chain abbreviations for the sn1 and sn2 positions and
also from a list of head groups. The corresponding lipid struc-
ture is then generated in MDL MOL format and rendered
in the Web browser using MarvinView applet,16 which may
alternatively be viewed using the JMol17 applet or Chemdraw
ActiveX/Plugin.18 The fatty acyl structure drawing tool has a
different user-input format where the user enters a valid fatty acyl
LIPID MAPS abbreviation representing the acyl chain length,
presence of double or triple bonds, and substituents on the acyl
chain. Examples are “18:1(9Z)” (oleic acid) and “20:4(5Z,8Z,
11E,14Z)(11OH[S])” (11(S)-hydroxy-5(Z),8(Z),11(E),14(Z)-
eicosatetraenoic acid).

The sterol drawing tools currently support the generation of
structures derived from cholestane, ergostane, campestane, and
stigmastane sterol cores. In addition to double bond position
specification, the user can choose to substitute atoms in the
cholestane core by C, N, O, and H along with the stereochem-
istry specification of α or β for the substituted atom. Pull-down
lists for position, stereochemistry, and atom specification are
provided for up to four simultaneous substitutions.
All major lipid categories contain glycosylated forms whose

glycan substituents can be challenging to draw in full chair
conformation. The LIPID MAPS glycan structure drawing tools
support the generation of a wide variety of glycan structures by
specifying the constituent sugars using the Consortium for
Functional Glycomics nomenclature.11 The following sugar
residues are supported: glucose (Glc), galactose (Gal), mannose
(Man), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine

Figure 5. Montage of screen shots showing LIPIDMAPS structure drawing tools. The top left box shows structure drawing tools available on the LIPID
MAPSWeb site. The top right box shows options available for generating a fatty acyl structure starting from either a complete abbreviation or individual
specification of chain and substituent with its position and stereochemistry. The middle box shows an example of structure generation using acyl chains
and head groups for glycerophospholipids. A comprehensive list of commonly occurring acyl chains and head groups is provided as a pull-down list. The
button box shows an example of a structure generated for a glycerophospholipid along with other ontological information.
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(GalNAc), xylose (Xyl), fucose (Fuc), acetylneuraminic acid
(NeuAc), glycolylneuraminic acid (NeuGc), and deaminated
neuraminic acid (KDN) as either the α or β anomer. Matched
parentheses inside glycan chain specification indicate branched
glycan chains, for example, GalNAcα1-3GalNAcβ1-3(Galβ1-
3GalNAcβ1-4)Galα1-4Galβ1-4Glcb.
2.3.2. Standalone Command Line Tools. A suite of

structure drawing tools in the form of Perl scripts have been
developedwhich can generate a large number of structures relatively
quickly using a command-line interface. These command-line tools
are particularly useful in the area of bioinformatics because struc-
tures and related information such as formulas, masses, and
abbreviations may be generated rapidly for large permutations of
side-chain substituents. The tools are available from the Lipidomics
Gateway Web site along with detailed documentation on the
methods and functions used by these programs.
In addition to consistent structure representations from lipid

abbreviations, the command-line tools developed by the LIPID
MAPS consortium also generate ontological information such as
the number of double bonds, chain lengths at different positions on
the glycerol backbone, the number of various functional groups,
and other structural characteristics. The ontological information is
also loaded into LMSD. The IUPAC International Chemical
Identifier21 (InChI) string and InChIKeys for lipid structures are
also generated using a command-line executable available from the
InChI Web site and loaded into LMSD database tables. Table 1
provides a list of tools available from LIPID MAPS.

2.4. Ontology Generation
An issue of major importance in dealing with lipid structures is

the huge diversity of chemical functional groups. This presents

problems in explicitly classifying certain lipids containing multi-
ple functional groups since assignment of a structure to a
particular subclass may be somewhat subjective. For example, a
fatty acid containing both epoxy and hydroxyl groups could be
assigned to either the epoxy or hydroxy fatty acid subclass. To
address this problem, the LIPIDMAPS bioinformatics group has
developed command-line tools which calculate the number of
functional groups, the number of rings, and other structural
information from an MDL MOL file representation of a molec-
ular structure (Figure 6). These tools are available for download
from the Lipidomics Gateway Web site. This approach may be
performed in batch mode on the entire lipid structure database,
thereby creating an “ontology” table which may then be incor-
porated into the database infrastructure. This in turn enables the
use of an ontology-based search where a user may choose to
search for lipids containing certain functional groups and a
certain number of carbons, rings, etc., irrespective of their
classification designation. A Web-based implementation of this
type of ontology-based search has been implemented on the
Lipidomics Gateway Web site.

3. LIPIDOME, LIPID GENOME, AND LIPID PROTEOME
DATABASES

3.1. Lipid Databases and Other Small-Molecule Databases
Containing Lipids

Lipids are generally hydrophobic in nature and soluble in
organic solvents. However, lipid molecules show a remarkable
structural and combinatorial diversity unlike other biological
molecules such as nucleic acids and proteins. Chemical structures
of lipids across different lipid categories are quite different and
cover a wide range of chemical space. For example, sterol lipids
are characterized by a four fused ring template consisting of three
six-membered rings and one five-membered ring. Glycerolipids,
on the other hand, typically do not contain any rings and contain
radyl chains attached to sn carbons on the glycerol group. The
radyl chains may be further unsaturated with varied double bond
positions and geometry adding to the structural heterogeneity of
lipids. Additionally, a large number of possible radyl chains at
various sn carbons on the glycerol group along with different
head groups lead to combinatorial isomeric positional diversity of
lipid structures for various lipid categories such as glycerolipids,
glycerophospholipids, and sphingolipids. Given the structural
diversity of lipids and the importance of their role in the
regulation and control of cellular function and disease, it is
essential to have a database of lipids which not only facilitates
the storage, retrieval, and dissemination of existing lipid struc-
tures and associated physiochemical properties data for the
lipidomics community but also is extensible, flexible, and scalable
to handle the vast amount of data being generated by new
lipidomic studies. A well-designed lipid database must include a
defined ontology which incorporates classification, nomencla-
ture, structure representations, definitions, related biological/
biophysical properties, cross-references, and physicochemical
properties (formula, molecular weight, number of carbon atoms,
number of various functional groups, etc.) of all objects stored in
the database. This ontology can then be transformed into a well-
defined schema that forms the foundation for a relational
database of lipids. A large number of repositories (e.g.,
GenBank,22 SwissProt,23 ENSEMBL,24 and GlycomeDB25) exist
to support nucleic acid, protein, and carbohydrate databases;
however, there are only a few specialized databases and resources

Table 1. Publicly Available LIPID MAPS Tools and
Resources Discussed in This Review

name URL

Pathway Editor www.lipidmaps.org/pathways/pathwayeditor.html

Structure

Database (LMSD)

www.lipidmaps.org/data/structure/

Proteome

Database (LMPD)

www.lipidmaps.org/data/proteome/index.cgi

online structure

drawing tools

www.lipidmaps.org/tools/

online mass MS tools www.lipidmaps.org/tools/

command-line

structure drawing

tools package

www.lipidmaps.org/downloads/

command-line ontology

generation package

www.lipidmaps.org/downloads/

stand-alone

windows MS

prediction tool

www.lipidmaps.org/downloads/

LMSD and LMPD

data download

www.lipidmaps.org/downloads/

lipidomic and

microarray

data download

www.lipidmaps.org/data/index.html

lipidomic

pathways download

www.lipidmaps.org/pathways/

experimental protocols www.lipidmaps.org/protocols/
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(e.g., LMSD, LipidBank,9c,d LIPIDAT,9a,b Lipid Library,9e and
Cyberlipids9f) that are dedicated to cataloging lipids. A variety of
other small-molecule public and commercial databases (e.g.,
Human Metabolome Database (HMDB),26 DrugBank,27 Ther-
apeutic Target Database (TTD),28 Chemical Entities of Biolo-
gical Interest (ChEBI),29 ChemBank,30 PubChem,31 ZINC,32

ChemSpider,33 Chemical Abstract Service (CAS),34 eMole-
cules,35 Beilstein,36 and Kyoto Encyclopedia of Genes and
Genomes (KEGG) LIGAND37) also exist which provide infor-
mation about lipid structures and their associated physicochem-
ical properties.

While there has been no prior effort at systematic and com-
prehensive classification and nomenclature of lipid molecules,

there are several small databases as mentioned in the previous
paragraph which contain some or several lipid molecules. The
LMSD database being developed by the LIPID MAPS consor-
tium is one of the latest databases dedicated to lipids and provides
comprehensive information about lipids. We provide an over-
view of the LMSD database, other lipid-specific databases, and
small-molecule databases (Table 2) containing lipids in the rest
of this section followed by a detailed description of the LMSD
database.

The LMSD10 is a relational database containing structures and
annotations of biologically relevant lipids. It is being developed
and maintained by the LIPID MAPS consortium and currently
contains over 30 000 structures which are obtained from the

Table 2. Resources and Databases Containing Information about Lipids

name URL comments/description

LMSD www.lipidmaps.org LIPID MAPS lipid structure database

LIPID BANK www.lipidbank.jp database of the Japanese Conference on the Biochemistry of Lipids

LIPIDAT www.lipidat.tcd.ie database of thermodynamic and associated information on lipids

Lipid Library www.lipidlibrary.org information about lipid chemistry, biology, technology, and analysis

Cyberlipids www.cyberlipid.org resource for lipid studies

HMDB www.hmdb.ca human metabololome database

DrugBank www.drugbank.ca drug data with target and action information

TTD xin.cz3.nus.edu.sg/group/ttd/ttd.asp therapeutic target database along with drug information

ChEBI www.ebi.ac.uk/chebi database and ontology for chemical entities of biological interest

ChemBank chembank.broad.harvard.edu small-molecule screening and cheminformatics resource database

PubChem pubchem.nci.nih.gov public repository for biological properties of small molecules including assay and screening data

ZINC zinc.docking.org commercially available compounds for virtual screening

ChemSpider www.chemspider.com chemical information resource

CAS www.cas.org small-molecule databases and associated information

eMolecules www.emolecules.com commercially available small molecules

Beilstein www.reaxys.com/ small-molecule structures and other information

KEGG LIGAND www.genome.jp/kegg/ligand.html database of chemical compounds and reactions in biological pathways

Figure 6. Overview of LIPID MAPS ontology data generation methodology from structure data.
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following sources (Figure 7): LIPID MAPS consortium’s core
laboratories and partners; lipids identified by LIPID MAPS
experiments; computationally generated structures for appropri-
ate lipid classes; biologically relevant lipids manually curated
from LIPID BANK, LIPIDAT, and other public databases; peer-
reviewed journals and book chapters describing lipid structures.

The LIPID BANK is a lipid database of the Japanese Con-
ference on the Biochemistry of Lipids (JCBL). It contains over
7000 lipids corresponding to the following main lipid classes:
acylglycerol, bile acid, derived lipid, eicosanoid, ether-type lipid,
fat-soluble vitamin, glycolipid, isoprenoid, lipid peroxide, lipo-
amino acid, lipopolysaccharide, lipoprotein, mycolic acid, phos-
pholipid, steroid, and wax. In addition to classification-based
browsing of lipids, the LIPID BANK supports text-based search
and retrieval of lipid data using the name and other physico-
chemical properties; the structure-based search is not available.
The search results along with structure and other basic informa-
tion such as molecular weight, molecular formula, name, and
common name provide the following additional information
about a lipid: biological activity, physical and chemical properties,
spectral data (ultraviolet (UV), infrared (IR), nuclear magnetic
resonance (NMR), MS), chromatogram data, chemical synth-
esis, metabolism, genetic information, and references.

LIPIDAT is a relational database of thermodynamic and
associated physicochemical property information on lipids. It
contains over 20 000 lipids. Users can search the database using
various physicochemical properties through more than two
dozen available text-based query pages. The detailed search
results page about a lipid includes the following information:
structure, name, and formula along with other basic information;
bibliographic information; experimental results and methods.

LIPID LIBRARY is not a database of lipids but an online
resource about the chemistry, biology, technology, and analysis
of lipids. The online pages provide information about lipids
organized into the following sections: basic information, bio-
chemistry and nutrition, lipid analysis, oils and fats, and latest
news. The basic information section covers the structures,
definitions, composition, biochemistry, and functions of the
following lipid categories: fatty acids and eicosanoids, simple
and complex glycerolipids and phospholipids, sphingolipids, and
sterols. The biochemistry and nutrition section covers only
plant lipid biochemistry. The lipid analysis section provides

descriptions of both chromatographic and spectroscopic techni-
ques used for analysis of lipids along with literature surveys of
analytical methodologies. The oils and fats section covers the
chemistry and technology of oils and fats along with the history of
science and technology. The detailed information available for
lipids covered in the basic information section provides the
following details for each lipid: structure, name, source and
occurrence, biochemistry, and function along with appropriate
literature references.

Cyberlipids is an online resource for studies of lipids. It
provides information about the definitions, source, composi-
tions, and physicochemical properties of lipids along with a
detailed review of various lipid analysis techniques. Users can
retrieve detailed information about a lipid using its name for
more than 900 lipids or get a list of all lipids with links to detailed
information.

HMDB is a database containing information about small-
molecule metabolites, including lipids, found in the human body.
It contains over 7900 metabolite entries with links to over 7200
protein and deoxyribonucleic acid (DNA) sequences. The
database provides links to three kinds of data: chemical data,
clinical data, and molecular biology/biochemistry data. Users can
search HMDB using text, chemical structures, and arbitrary
relationships of available data fields. Database searching using
spectral and chromatography data (MS, MS/MS, GC�MS, and
NMR) is also available. Additionally, a variety of different data-
browsing options are provided: class-based, pathway-based, and
disease-based browsing and so on. The detailed information
about each molecule is presented as a MetaboCard containing
over 110 different data fields with two-thirds of the data fields
containing information about chemical/clinical data and the rest
about enzymatic and biological data. The links to other external
data sources are also provided.

The DrugBank database provides detailed information about
drugs, including lipids, along with the drug targets. The detailed
drug information consists of chemical, pharmacological, and
pharmaceutical information; the target information corresponds
to the sequence, structure, and pathway. The database contains
over 6800 drug entries covering the following types of drugs:
over 1400 food and drug administration (FDA)-approved small-
molecule drugs, over 130 FDA-approved biologics drugs, over 83
nutraceuticals, and over 5000 experimental drugs. Additionally,
information for over 4000 nonredundant protein target se-
quences is linked to the drug entries. Users can search the
DrugBank database using text, chemical structures, and arbitrary
combinations of available data fields. A variety of different data-
browsing options are also available: drug name, pathway, class
name, and so on. The detailed information about each drug is
presented as a DrugCard containing over 150 data fields with half
the information covering drug/chemical data and the rest
corresponding to the drug target.

TTD provides information about known targets along with
information for associated diseases, pathways, and drugs for these
targets. The TTD database contains information for over 1900
targets and over 5000 drugs with over 3000 small-molecule drugs.
The drug information covers over 1500 approved drugs, over 1100
drugs in clinical trials, and over 2300 experimental drugs. The text-
based database search provides searching using the target/disease
name, drug name, function, and classification. The detailed search
results page contains information about the target and disease,
drug name and its function, and links to other external database
containing information about targets and drugs.

Figure 7. Overview of LMSD generation methodology.
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The ChEBI database provides structural and ontological
information about molecular entities focused on small-molecule
compounds, including lipids. The molecular entities are either
natural products or synthetic products used for biological
intervention; nucleic acids are not included. The ChEBI
database contains over 19 000 small molecules. The informa-
tion about small molecules in ChEBI comes from the following
four key sources: IntEnz38—the integrated relational enzyme
database of the European Bioinformatics Institute (EBI),
KEGG COMPOUND,39 PDBeChem,40 and ChEMBL.41 Users
can search the ChEBI database using text, chemical structures,
and arbitrary combinations of available data fields. The structure-
based search also supports similarity and substructure searching.
The detailed search results along with structure and other basic
information such as molecular weight, molecular formula, name,
and common name provide the following additional information
about a small molecule: ChEBI ontology, brand name, references
to other databases, registry numbers corresponding to ex-
ternal sources (CAS, Beilstein, and Gmelin), and literature
references.

ChemBank is a relational database containing data derived
from small molecules, including lipids, and small-molecule
screens along with tools for analyzing these data. The database
contents include chemical structures and names, calculated
molecular descriptors, human-curated information about small-
molecule activities, raw experimental results from high-through-
put biological assays, and metadata describing the screening
experiments. The ChemBank database contains data for over
1.7 million compound samples with over 1.2 million unique
small-molecule structures screened against more than 2500
assays covering more than 180 projects. Additionally, it contains
information for over 1000 proteins, 500 cell lines, and 70 species
associated with various assays. Users can search ChemBank using
text, chemical structures, and arbitrary relationships of available
data fields. Structure-based searching, in addition to substructure
and exact match, also supports similarity searching. Database
searching using information about high-throughput screens and
small-molecule assays is also available. Additionally, a number of
tools for analysis and visualization of small-molecule screening
results are provided. The detailed search results along with
structure and other basic information such as molecular weight,
molecular formula, name, and common name provide the
following additional information for a small molecule: a large
number of calculated physicochemical properties; compound
sample information; screening information, including project
name, assay name, assay type, plate, well, and z-score.

The PubChem database is a database of chemical molecules
and biological activities of molecules screened against various
assays. It also contains information about lipids as the LIPID
MAPS consortium uploads its LMSD database of lipids into
PubChem on a regular basis. The PubChem database is divided
into three main categories: The Compound database with over
32 million entries contains unique chemical substances derived
from substance depositions, the Substance database with over
74 million entries consists of chemical compounds submitted by
depositors corresponding to mixtures, extracts, and complexes,
and the BioAssay database contains biological activity results
from over 1600 high-throughput screening projects with several
million measured values. The PubChem data deposition is
open to the scientific community. The growing list of over 140
substance and 47 assay depositors represents all major sources,
including commercial vendors, public nonprofit organizations,

pharmaceutical companies, and individual contributors. Users
can search PubChem compounds, substances, and bioassay
databases using text, chemical structures, and arbitrary relation-
ships of available data fields. Text-based searching supports the
usage of a wide variety of parameters, including name, formula,
physiochemical properties, stereochemistry specifications, ele-
ments, and so on. Structure-based searching provides support
for substructure/superstructure search and identity/similarity
search. The detailed search results page for compound along
with structure and other basic information such as molecular
weight, molecular formula, name, and common name provide the
following additional information for a compound: synonyms,
calculated physicochemical properties, substance information,
biomedical annotation, pharmacological action and classification,
chemical classification, safety and toxicology, links to exiting
literature, and so on. The substance detailed results page, in
addition to basic information such as chemical structure, name,
and formula, contains the following additional information: link
to data depositor, links to any bioactivity information and other
structurally related substances, and links to other databases
maintained by the National Center of Biotechnology Informa-
tion (NCBI). A variety of analysis tools such as bioactivity
structure�activity analysis and chemical structure clustering
are also provided for the analysis of bioassay screening data.

The ZINC database contains commercially available small
molecules for virtual screening. It contains over 13 million
purchasable compounds, including lipids. Users can search the
ZINC database using compound names, chemical structures/
substructures, physicochemical properties, vendor catalog num-
bers/sources, and so on. The compound detailed search page
includes chemical structure, name, formula, various calculated
physicochemical properties, vendor and purchase information,
and availability.

ChemSpider is a chemical database and an online resource
linking together compound information across the Web. The
compound information includes physical and chemical proper-
ties, chemical structure, systematic nomenclature spectral data,
synthetic methods, known reactions, and safety information.
ChemSpider contains over 25 million unique chemical com-
pounds sourced and linked to over 400 separate data sources,
including LIPID MAPS for lipids. The compound data are
collected from over 50 different sources. Additionally, Chem-
Spider supports the uploading and curation of chemical structure
and spectral data by the scientific community. Users can search
the ChemSpider database using text, chemical structures, and
arbitrary relationships of available data fields. Text-based search-
ing supports the usage of a wide variety of parameters, including
name, formula, physiochemical properties, literature search, and
so on. The structure-based search supports chemical structure/
substructure search along with arbitrary combinations of calcu-
lated physicochemical properties. The detailed search results
page for a compound along with structure and other basic
information such as molecular weight, molecular formula, name,
and common name provide the following additional information:
links to Wikipedia articles; associated data sources and commer-
cial suppliers; patents; literature articles; calculated physico-
chemical properties; medical subject heading classification;
pharmacological data; spectra; inks to other literature data.
The ChemSpider online resource also hosts a variety of Web
services such as chemical names to structure conversion, gen-
eration of InChI strings, and calculation of various physicochem-
ical properties.
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CAS is a comprehensive resource of chemical information
combining databases with search and analysis tools available as
chemical abstracts and chemical databases. CAS provides two
main chemical databases: CAplus and CAS REGISTRY. The
CAplus database consists of summaries and indices of scientific
literature covering chemistry and chemistry-related topics such
as proteomics, genomics, and so on. The CAplus database
contains over 33 million references, and its coverage of scientific
literature starts from the early 1800s and spans across 10 000
journals, technical reports, conference proceedings, and books in
more than 60 languages; it also covers patent literature from over
60 countries. The CAS REGISTRY database contains over 52
million organic and inorganic chemical substances and over 62
million sequences. Its coverage of chemical substances also starts
from the early 1800s and covers substances from patents,
chemical catalogs, and various Web sources; the sequence data
are retrieved from GenBank. In addition to basic compound
information such as structure, name, formula, and molecular
weight, the chemical substance record contains the following
additional information: a unique CAS number, experimental and
calculated physicochemical properties, ring analysis, and litera-
ture references. The CAS databases are searched using SciFinder,
which supports both text-based and structure-based searching
along with usage of other parameters during the search. In
addition to CAplus and CAS REGISTRY, CAS provides the
following three databases: CASREACT, CHEMLIST, and
CHEMCATS. The CASREACT and CHEMLIST databases
contain information about chemical synthesis and regulated
chemicals, respectively. The CHEMCATS database contains
over 44 million commercially available substances covering over
1200 catalogs from 1100 suppliers; it has over 12 million
chemical substances with unique CAS numbers.

eMolecules is an online resource for commercially available
chemical molecules, including lipids. It contains over 8 million
unique molecules from a variety of commercial catalogs and
other online data sources such as the National Institute of
Standards and Technology (NIST), PubChem, DrugBank, and
LIPID MAPS. Users can search the eMolecules database using
molecule names, molecule structures/substructures, suppliers,
and various physicochemical properties. In addition to basic
molecule information such as structure, name, formula, and
molecular weight, the molecule record contains information
about suppliers and links to ordering chemicals.

The Beilstein database provides experimentally validated
information about millions of chemical compounds uniquely
identified by Beilstein Registry Numbers and chemical reactions
compiled from the scientific literature starting from 1771. The
original database was created using Beilstein’s Handbook of
Organic Chemistry and contains information about reactions,
chemical substances, chemical structures, and physiochemical
properties. The record for each substance has over 350 data fields
corresponding to chemical and physical data along with appro-
priate literature references. Users can search the database using
the Reaxys system using one of the following three search
options: reaction searching, substance and property searching,
and text searching. During reaction searching, a variety of other
parameters such as starting materials, products, reaction condi-
tions, and so on can also be specified. Substance and property
searching provides structure/substructure search along with
specification of various physical and chemical properties. The
text-based search allows users to retrieve appropriate data using
substance name, authors, and a variety of other parameters. The

detailed search results page for substance along with structure and
other basis information such as molecular weight, molecular
formula, name, and common name provide the following additional
information: calculated physicochemical properties, physical and
spectral data, synthesis information, and links to the literature.

KEGG LIGAND is a database of chemical compounds and
reactions involved in biological pathways. It is a composite
database consisting of three other databases: KEGG COM-
POUND, KEGG ENZYME, and KEGG REACTION. The
KEGG COMPOUND database contains information for over
7000 metabolites and biologically relevant chemical compounds,
including lipids, which are classified according to the LIPID
MAPS classification system and made available through the
KEGG BRITE database. The KEGG REACTION database
contains information for over 5000 reactions corresponding to
metabolic and other reactions. The KEGG ENZYME database
has information for over 3800 enzymes involved in various
transformations. Users can search KEGG LIGAND databases
using text and chemical structures. The structure-based search
supports structure/substructure search along with similarity
searching. The detailed search results page for a compound
along with structure and other basic information such as molec-
ular weight, molecular formula, name, and common name
provide the following additional information: links to ENZYME
and REACTION databases, links to external data sources such as
PubChem and CAS numbers.
3.1.1. Populating the Structure Database. An object-

relational database of lipids containing structural, biophysical,
and biochemical characteristics is available on the Lipidomics
Gateway Web site with browsing and searching capabilities.
LMSD currently contains over 30 000 structures which are
obtained from a variety of sources: LIPID MAPS consortium’s
core laboratories and partners; lipids identified by LIPID MAPS
experiments; computationally generated structures for appropri-
ate lipid classes; biologically relevant lipids manually curated
from LIPID BANK, LIPIDAT, and other public databases; peer-
reviewed journals and book chapters describing lipid structures
(Figure 7). All structures have been classified and redrawn
according to LIPID MAPS guidelines. After lipids have been
selected for inclusion into LMSD, they are classified following
the LIPIDMAPS classification scheme as explained earlier under
the classification, ontology, and nomenclature of lipid molecules
section (section 2). Structures of the lipids are either drawn
manually or generated automatically by computational structure
drawing tools developed by the LIPID MAPS consortium; the
structure representation is consistent and adheres to the rules
proposed by the LIPID MAPS consortium. On the basis of its
classification, each lipid structure in LMSD is assigned a unique
LM ID. The format of the LM ID (Figure 8) not only maintains
the uniqueness of the ID but also provides the capability to add
new categories, classes, and subclasses as the need arises.
In addition to import and manual curation of biologically

relevant lipids from other database sources, LMSD also stores
their original IDs to enable cross-referencing. LMSD lipid

Figure 8. Description of the LIPID MAPS LM ID.
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structures are deposited into the PubChem database periodically,
and a link to the PubChem Substance ID (SID) is also main-
tained within LMSD. Access to the complete set of LMSD lipid
structures in the PubChem database is also available.42

LMSD structures are either drawn manually using Chem-
Draw or generated automatically by structure drawing tools
developed by the LIPID MAPS consortium for various sub-
classes in fatty acyls, glycerolipids, glycerophospholipids, sphin-
golipids, and sterols. The structure drawing tools are Perl
scripts which can generate a large number of structures rela-
tively quickly via a command-line or Web-based interface. In
addition to consistent structure representations from lipid
abbreviations, these scripts also generate ontological informa-
tion such as the number of double bonds, chain lengths at
different positions on the glycerol backbone, the number of
various functional groups, and other structural characteristics.
The ontological information is also loaded into LMSD. The
InChI string and InChIKeys for lipid structures are also
generated using a command-line executable available from
the InChI Web site and loaded into the Oracle database43

tables. The database schema used for LMSD is outlined in an
entity relationship diagram in Figure 9.

3.1.2. Searching the Structure Database.The Lipidomics
Gateway Web site supports searching of the LMSD database in
three different ways: classification-based, text/ontology-based,
and structure-based search. Classification-based browsing pro-
vides the capability to retrieve lipids on the basis of the LIPID
MAPS classification scheme. After the user selects one of the
main categories of lipids, a listing of all lipids present in the
selected category, along with a link to the set of lipids in each
main class and subclass, is provided. The user may then select all
lipids which belong to either amain class or a subclass and display
the results as a results summary page.
In the case of lipids containing multiple functional groups,

assignment of a structure to a particular subclass may be some-
what subjective. For example, a fatty acid containing both epoxy
and hydroxy groups could be assigned to either the epoxy or
hydroxy fatty acid subclass. To address this situation, an ontology-
based search is also provided. The user may choose to search
for lipids containing similar functionality, and all the lipids with
the specific functionality, irrespective of their subclass designa-
tion, would be retrieved. The text/ontology-based query page
allows the user to search LMSD by any combination of these data
fields: LM ID, common or systematic name, mass along with a

Figure 9. Entity relationship diagram for LMSD showing the Oracle database tables containing structural and classification information as well as
annotations and ontological data. The unique LM ID identifier plays a central role as a primary key in this relational schema.



6464 dx.doi.org/10.1021/cr200295k |Chem. Rev. 2011, 111, 6452–6490

Chemical Reviews REVIEW

tolerance value, formula, category, main class, subclass, and
various combinations of ontology parameters. The structure-
based search page provides the capability to search LMSD by
performing a substructure or exact match using the structure
drawn by the user. Three supported structure drawing tools are
MarvinSketch,16 JME,44 and ChemDrawPro.18 The first two of
these structure drawing tools are Java applets and require only
applet support in the browser. In addition to the structure, the
user can also specify the LM ID and common or systematic
name for the search.
The record details page, in addition to displaying the structure

for the selected lipid, also contains all relevant information for
that molecule such as common and systematic names, synonyms,
molecular formula, exact mass, classification hierarchy, InChI-
Key, and cross-references (if any) to other databases.
The default lipid detail page uses a Graphics Interchange

Format (GIF) image for representing the structure of the lipid.
The decision to use the GIF format for representing lipid
structures in theWeb browser was made due to its native support
across all the browsers. The structure may also be viewed and
manipulated using MarvinView,16 JMol,17 and the ChemDraw
and ActiveX/Plugin18 formats where structures may be manipu-
lated, scaled, and saved in a number of high-resolution formats.
Figure 10 shows screen shots of the LMSD user interface for lipid
classification-based, text-based, and structure-based searching.

3.2. Lipid Proteome Databases
3.2.1. Populating the Proteome Database. To fully

understand the roles of lipids, we must also understand the
enzymes that catalyze lipid-related metabolic pathways, tran-
scription factors and signaling agents involved in lipid regulation,
and other proteins that affect lipid biochemistry by binding to
or interacting with lipids. While Entrez Gene45 and UniProt46

provide annotations of proteins and their corresponding genes
vis-�a-vis their functional role, there was previously no database
that comprehensively cataloged all lipid-associated proteins. The
LIPID MAPS Proteome Database (LMPD)47 developed by
LIPID MAPS serves such a purpose.5

UniProt and Entrez Gene contain a significant part of the
annotations of proteins and genes, respectively, and most of the
known lipid-related proteins have been annotated in these databases.
However, prior to the development of LMPD, there was no
unique database of lipid-associated proteins that contained com-
prehensive and context-dependent annotations. LMPD was
developed to fill this void by providing a catalog of genes and
proteins involved in lipid metabolism and signaling. LMPD
can be searched by database ID, keyword, KEGG pathway, or
Gene Ontology (GO) term and is publicly available from the
Lipidomics Gateway Web site.
LMPD is constructed as an object-relational database of lipid-

associated protein sequences and annotations. The database

Figure 10. Selection of screen shots showing various options for searching LMSD and results summary for a specific LM ID.
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schema used for LMPD is outlined in an entity relationship
diagram in Figure 11. The initial release of LMPD established a
framework for creating a lipid-associated protein list, collecting
relevant annotations, databasing this information, and providing
an online user interface. A similar approach was used previously
for development of the MitoProteome database.48 The current
release of LMPD contains approximately 1200 lipid-related
proteins each for human and mouse species.
To construct LMPD, a curated set of lipid-related keywords was

created for each of the eight lipid categories. These keywords,
containing terms such as “lipase”, “cyclooxygenase”, “ceramide”,
and “choline”, were then used to search the name, description, and
annotation information in publicly available UniProt,46 Entrez
Gene, GO,49 and KEGG50 data repositories for mouse and human
species to identify proteins, genes, and related pathway and
ontology information containing these terms. The GO terms
identify proteins that are involved in particular anabolic, catabolic,
and other metabolic processes, while proteins gathered from
KEGG were identified as being involved in a lipid metabolic
pathway. Experimental methods used in identifying these proteins
included various enzyme assays, high-performance liquid chroma-
tography (HPLC), polyacrylamide gel electrophoresis, and mass
spectrometry. All protein lists generated by these automated
methods were then manually curated, erroneous entries were
deleted, known lipid-related proteins not identified by the meth-
ods above were added, and corresponding Entrez Gene IDs and
annotations were generated for all Uniprot records. This process is
illustrated in Figure 12.

The Signaling Gateway Molecule Pages (SGMP) database,
another database containing states of proteins involving lipids, is
a repository derived from a comprehensive signaling protein
ontology that covers functional states of a protein, the transitions
between those states, and the defined functions of a protein in a
given cellular context.51 The SGMP data are exported to the
Biological Pathway Exchange (BioPAX)52 and Systems Biology
Markup Language (SBML).53 The SGMP database contains
information on several lipid binding and modifying proteins
(Table 3).
3.2.2. Searching the Proteome Database. Multiple

LMPD query interfaces are available, enabling users to search
LMPD by database ID or keyword, by KEGG pathway, or by GO
term. From the search results, one can access annotations
relevant to each protein of interest, cross-linked to external
databases. Annotations are organized by record overview,
Gene/GO/KEGG information, protein domain information,
SwissProt/UniProt annotations, and related proteins and LIPID
MAPS experimental data (if any). The record overview contains
LMPD ID, species, description, gene symbols, lipid categories,
enzyme code (EC) number, molecular weight, sequence length,
and protein sequence. Gene information includes Entrez Gene
ID, chromosome, map location, primary name, primary symbol,
and alternate names and symbols, GO IDs and descriptions, and
KEGG pathway IDs and descriptions. UniProt annotations
include primary accession number, entry name, and comments
such as catalytic activity, and enzyme regulation, function, and
similarity.

Figure 11. Entity relationship diagram for LMPD showing the Oracle database tables containing information pertaining to lipid-related genes and
proteins for human and mouse species.
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4. LIPID EXPERIMENTAL PROTOCOLS ANDMETADATA
MANAGEMENT

The post genome sequencing era has heralded the beginning
of a new phase of scientific discovery that is based on massive
volumes of data generated by high-throughput technologies.54

This exploratory, data-driven approach represents a paradigm
shift from the traditional scientific discovery where an individual
laboratory’s effort is focused on a particular gene product and the
pathway in which the gene product participates, i.e., a hypothesis-
driven approach. Efforts to understand the detailed functioning
of all the elements of the cellular machinery at the molecular level
pose a major challenge that would require a large collective effort
from a multidisciplinary organized team of scientists. If people
working in academia were to engage in such an effort, the
organization of the effort would perhaps require a consortium
approach with laboratories having expertise in different areas
such as cell biology, molecular biology, proteomics, functional

genomics, and bioinformatics contributing to a joint and well-
integrated effort.

Each high-throughput technique generates a large body of
data to be recorded. It brings two data management issues to the
fore: first, how the sheer amount of data from heterogeneous but
related experiments from various laboratories will be handled
and, second, how data will be shared and analyzed collectively
among them and made available to the public at large. The
laboratory notebook concept is insufficient to deal with the issues
of data handling, structuring, and sharing.55 For such a research
endeavor, utilization of high-throughput techniques to explore
complex biological systems is the norm rather than an exception.
In a high-throughput setup the output from one experiment is
the input of another. Situations like these create another set of
issues to be dealt with, since samples will be passed from one
laboratory to another in bulk quantities for subsequent handling
and analysis. The samples are all necessarily coded such that the
recipient laboratory could recover the information about the
history of each received sample. Laboratory notebooks could be
replaced by a relational database, which would facilitate data
deposition from various laboratories to a common repository,
and at the same time data could also be viewed by authorized
personnel. The data structuring could be achieved by an appro-
priate database schema design, which could also enforce linking
of the data from heterogeneous biological experiments, thus
offering easy access to the data analysis en masse. The role of the
pen will be replaced by graphical user interfaces (GUIs) and a
keyboard; the GUI would enable the experiment to document
the samples and their handling and directly deposit data to the
database. There will be a separate GUI for each type of experi-
ment, so the use can be guided as to what needs to be done. The
GUI should be designed to check data validity prior to deposition
into the database; this will minimize the manual data entry errors
inherent in a notebook system. Data should be regularly backed
up to guard against any kind of system failure. This scheme
essentially represents a paper-free and scalable structured elec-
tronic notebook for data cataloging and automated incorporation
of time stamps to record the data entry. After successful deposi-
tion of the experimental parameters to the database through a
GUI, the user must be provided with a label to identify the sample
container, which in biological experiments is often a tube or flask.
The label should uniquely identify each experiment and contain
meaningful information to facilitate deciphering its contents.

The data structuring, handling, and management require-
ments could be met by the use of a laboratory information
management system (LIMS). Use of LIMSs is widespread in
diverse industrial settings; they are used in pharmaceuticalFigure 12. Overview of the bioinformatics process for creating LMPD.

Table 3. Representative List of Lipid-Related Signaling Proteins as Molecule Pages

SGMP ID GenBank accession no. molecule page name molecule page category

A001757 AAH05636.1 phosphodiesterase 6D, cGMP-specific rod delta lipid binding protein

A003319 NP_898977.2 DFCP1 lipid binding protein

A000010 NP_032892.1 acyl protein thioesterase 1 lipid modification, protein

A000095 NP_032733.1 protein N-myristoyltransferase 1 lipid modification, protein

A001778 NP_780565.1 phosphatidylinositol-4-kinase type III beta kinase, lipid

A002220 NP_064395.2 sphingosine kinase 2 kinase, lipid

A001749 AAC37702.1 phosphodiesterase 1C, calmodulin dependent phosphodiesterase

A001750 NP_001008548.1 phosphodiesterase 2A, cGMP stimulated phosphodiesterase

A000046 BAC00906.1 phospholipase C epsilon phospholipase

A001789 AAH45156.1 phospholipase A2, group IIA phospholipase
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companies, forensic laboratories, environmental agencies, and
the food and beverage industries, which have to follow strict
quality assurance (QA)/quality control (QC) standards. Dozens
of LIMSs are available in the market from commercial vendors;
they are generally expensive and may not meet the specific needs
of a particular project.

Apart from organizing data, a more important reason for
laboratory information management systems in lipidomics is to
minimize inherent variability in experimental data, as procedures,
time, and personnel can all cause significant variation in the
results. An LIMS should be organized in such a way as to

minimize this variability and properly annotate the specific
reagents and procedures utilized in a given experiment for future
reference.

An LIMS must be usable by laboratory technicians and other
personnel with limited bioinformatics experience. As much as
possible, user interfaces must be engineered to provide important
informational and contextual pointers for how they are intended
to be used. Constraints on entries and readily understandable
feedback messages should be provided in meaningful ways. In
some cases, there may be no substitute for person-to-person
interaction in providing assistance, and a person may be

Figure 13. Main user interface of LIPID MAPS LIMS. Reprinted with permission from ref 57. Copyright 2007 Elsevier Ltd.

Figure 14. Treatment module of LIMS. Reprinted with permission from ref 57. Copyright 2007 Elsevier Ltd.
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dedicated to providing help to other personnel. These features
can foster the goal of achieving widespread user acceptance.

The LIPIDMAPS projectmodified an earlier, highly developed
LIMS system that had been constructed for the Alliance for Cell
Signaling (AfCS).56 The principles of lipidomics involve many of
the same concepts as those associated with the broader category of
metabolomics. That is, metabolomics studies often involve indu-
cing perturbations to the ongoing state of living systems and
subsequently monitoring changes at specific time points.1b The
various lipid species are measured at different time points, and
quantities are systematically determined. This may be performed
within a single laboratory, or a number of laboratories may
collaborate in the endeavor. In support of these aims, agreement
must be reached among the persons performing the work on the
experimental protocols at each step, and protocols and documents
must be stored and made available to all. To accomplish transfer,
centralized storage, and sharing of data among LIPID MAPS
member laboratories, we have developed an LIMS to submit data
to a central database and to obtain data from the same source.57 To
handle the large amounts of data, a relational database is an
essential requirement. The information entered into the system is
best entered by individual users or laboratories. A two- or three-tier
platformmay be deployed, and data entry forms may be presented
in the form of a dedicated program or Web site.

The user interface of the LIPID MAPS LIMS consists of a
number of discrete GUIs representing modules of function-
ality that are accessed from a single main window interface
(Figure 13). The entire application is downloaded from a Web
site as a Java Web Start application at the time of each use. These
individual modules allow users to enter information and browse
the LIMS database. After entering information, the user clicks a

button to send information to a central Oracle database. The
LIMS also allows tracking of laboratory materials and protocols
via printed labels that may be scanned into modules using
barcode readers, thus minimizing typing errors.

The LIPID MAPS LIMS is organized around cellular treat-
ments and MS experiments. The LIMS enforces adherence to
process controls in the form of exact control of experiments using
strict solution and procedural protocols. A protocol ID is required
by the majority of modules. The protocol ID refers to a document
in the LIMS database that describes a laboratory procedure or
solution composition. The user may use one of the protocol
documents that are already within the LIMS for this purpose. In
addition, any of the participating LIPID MAPS laboratories may
upload a new protocol and generate a new protocol ID.

The Treatment module provides the essential lipidomics
functionality of the LIMS (Figure 14). Into this form, details of
the treatment conditions are entered. These include reagent or
solution IDs, concentrations, and the start time, end time, and
durations of both current treatment and pretreatment during an
experiment with a particular cell preparation. These data are vital
for studies of stimulus- and time-dependent alterations to lipid
composition. Individual sample IDs are associated with cells
receiving different treatments within an experiment.

A significant contribution to the functionality in the LIMS
arises from close integration of modules. Each module has search
functions that search database tables for information entered by
that module. Another implementation of searching and user
interaction occurs in the case of the Reporter, or the LIMS
Reports, module. The Reporter module allows the user to
construct high-level reports summarizing overall database con-
tent using certain key parameters as search terms. For example,

Figure 15. LIMS Reporter (reporting tool) module. Reprinted with permission from ref 57. Copyright 2007 Elsevier Ltd.
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the user may obtain a summary table of cell vessel IDs that
originate in a thaw of a particular vial of frozen cells used by a
laboratory, along with the protocol ID that was used for thawing
and passaging and the ID of any experiment in which a cell
passage deriving from that vial was used (Figure 15). The history
of a cell line from freezer to experiment is thus obtained.

The modules of the LIPID MAPS LIMS were intended to be
used sequentially, with database identifiers from previous mod-
ules in list format made available to users for insertion into later
modules. A flowchart published previously illustrates one poten-
tial usage sequence that begins with the Reagent module and
ends with the Mass Spec module.57

While most of thesemodules are generic in nature, others have
been engineered that are specific for the needs of LIPID MAPS.
For example, the Avanti Reagent module allows the user to track
reagents provided by supplier of molecular standards with the
aim of ensuring that materials used for quantitation purposes re-
mained within quality specifications. Among other actions, users
can download a current, updated certificate of quality for any lot of
material previously shipped to a consortium laboratory. This can
be an important consideration when using standards that may
possess abbreviated shelf lives. In LIPIDMAPS, only Avanti Polar
Lipids, Inc. (Alabaster, AL) can input such information, while all
laboratories have access to downloading from this module.

On occasion, users may not have time to properly access all
modules in succession. For example, the Solution module
requires prior use of the Reagentmodule, alongwith the Protocol
module to insert a protocol on solution composition. This step is
of particular importance in mixing internal standards used in
mass spectrometry. The New Solution module allows bypassing
both these modules, with only a brief sketch of solution content
required. During later data analysis, performed after the conclu-
sion of an experiment, acceptance or rejection of a questionable
datum may hinge on whether the information trail that includes
the information entered by either of these modules provides
sufficient detail that its reliability can be affirmed. Consequently,
the New Solution module typically plays a role only in investiga-
tions limited in scope to a specific laboratory.

Analysis and mining of the metadata and associated data
obtained with the assistance of this LIMS is conducted offline
at the Bioinformatics core. LIMS metadata and the experimental
data described by the metadata are available on the Internet for
browsing and are directly linked to a public database of lipid
structures that is curated by experts10 and to a database of
proteins known to be involved in lipid metabolism in mice and
in humans.47 Both are available from the Lipidomics Gateway
Web site.5 The availability of solution and procedure protocols as
well as tools allowing searching and drawing of lipid structures
are also featured at this site.

A widely publicized effort to standardize the content of meta-
bolomics experiment informational resources to allow computer-
ized searching has been proposed.58However, such standardization
efforts seem not to have been widely pursued in metabolomics
projects, at least partly because of difficulties in adequately compar-
ing experiments performed using disparate technologies, such as
NMR spectroscopy and mass spectrometry.59

5. ANALYSIS AND PRESENTATION OF LIPID MASS
SPECTROMETRIC DATA

With the availability of sensitive analytical instrumentation
such as mass spectrometry, it is now possible to obtain

quantitative data on large numbers of lipid species under a variety
of experimental conditions. MS methods for the characterization
of lipid mixtures have also been published in recent years, most
of them centered on the use of electrospray ionization (ESI)
MS, atmospheric pressure chemical ionization (APCI) MS,
and matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) MS.60 Currently, mass spectrometric analysis
of lipids is mainly comprised of two complementary approaches
which either employ direct infusion (shotgun lipidomics)61 or
use liquid chromatographic separations prior to mass spectro-
metric analysis (LC�MS). An advantage of shotgun lipidomics is
that a mass spectrum displaying molecular ions of individual
molecular species of a class of interest can be acquired at a
constant concentration of the lipid solution during direct infu-
sion. This unique feature of shotgun lipidomics allows research-
ers to perform precursor ion scans of the particular fragment ions
and/or neutral loss scans of the interested neutrally lost frag-
ments for identification and quantitation of the individual
molecular species of a lipid class or a category of lipid. On the
other hand, customized LC�MS techniques tailored to a parti-
cular lipid class of interest have the ability to resolve complex
lipid mixtures during the LC step, allowing for more reliable
identification during the MS step. From a bioinformatics stand-
point, MS data analysis can be divided into a number of distinct
phases: (a) processing of raw data files which may involve peak
averaging, normalization, integration, isotope correction, and
display of processed spectra; (b) peak identification using
algorithms to match lipid ions against databases of known or
computationally derived structures; (c) statistical analysis of MS
data to quantify significant changes between different samples
(lipidomic profiling) and between different lipid species in the
same sample (correlation analysis) or within the same species
over time (temporal analysis); (d) modeling of lipid data onto
biological pathways as part of a systems-biology approach.

5.1. MS Analysis Software
In recent years there has been an urgent need for informatics

solutions to efficiently process the large amounts of MS data
generated by lipidomics experiments and deal with the unique
complexities of lipid structures. The number of software
packages has expanded considerably over the last 5 years, and
they include a number of freely available applications that are
capable of handling multiple tasks in the analysis pipeline (see
Table 4). The Java-based MZmine62 provides users with a
modular framework for processing, visualizing, and analyzing
mass spectrometry-based molecular profile data and is particu-
larly useful for analyzing LC�MS experiments. Another recently
released Java application is the Lipid Data Analyzer (LDA)63 in
which the authors have developed new algorithms for detection
and quantification of minor lipid analytes from LC�MS data.
Examples of lipidomics software implemented asMicrosoft Excel
add-ons are the Fatty Acid Analysis Tool (FAAT)64 and Lipid
Mass Spectrum Analysis (LIMSA).65 FAAT has been optimized
for analysis of high-resolution MS data generated by Fourier
transform-ion cyclotron resonance (FT-ICR) mass spectra. The
LIMSA tool is capable of performing isotopic correction and
peak integration as well as mass matching to a user-supplied list
of expected lipids. Commercial MS instrument vendors such as
AB-SCIEX (www.absciex.com) are developing their own plat-
form-specific lipid analysis approaches such as Lipid Profiler and
LipidView,66 but they suffer from the drawback that they must
be used in conjunction with their proprietary Analyst software.
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A new open source Python programming language67 application
called LipidXplorer68 is tailored toward the analysis of data from
shotgun lipidomics experiments. LipidXplorer does not have a
database of lipid masses for peak identification but instead
enables the user to compose queries and constraints for lipid
classes of interest using the novel concept of a Molecular
Fragmentation Query Language (MFQL). The LIPID MAPS
MS analysis tools (http://www.lipidmaps.org/tools/index.html)
are a freely available set of online resources and focus on the
simpler task of matching peak lists of precursor ions to predicted

structures under a variety of experimental conditions. Certain
classes of lipids such as acylglycerols and glycerophospholipids
composed of an invariant core (glycerol and head groups) and
one or more acyl/alkyl substituents are good candidates for MS
computational analysis. These molecules tend to fragment in a
predictable fashion in collision-induced experiments leading to
loss of acyl side chains, neutral loss of fatty acids, and loss of water
and other diagnostic ions69 depending on the nature of the head
group. It is possible to create a virtual database of permuta-
tions of the more common side chains for glycerolipids and

Table 4. Examples of Software for Performing Lipid MS Analysis

application platform comments, URL

Mzmine Java comprehensive package for lipidomics profiling, http://mzmine.sourceforge.net/

LDA Java novel algorithms for detection of minor lipid species, http://genome.tugraz.at/lda

LipidXplorer Python designed for shotgun lipidomics data, uses novel query language, http://sourceforge.net/projects/lipidxplorer/

LIMSA Excel add-on performs mass matching to a user-supplied list of expected lipids, http://www.helsinki.fi/science/lipids/software.html

FAAT Excel add-on designed for analysis of FT-ICR data, http://www.genomecenter.ucdavis.edu/leary

LipidView Windows proprietary AB-SCIEX package used in conjunction with Analyst software, http://www.absciex.com/products/software

LIPID MAPS Web interface set of online MS prediction tools tailored to different lipid classes, http://www.lipidmaps.org/tools/index.html

Figure 16. Montage of screen shots showing LIPID MAPS mass spectrometry tools.
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glycerophospholipids and calculate “high-probability” product
ion candidates to compare the experimental data with predicted
spectra. The LIPID MAPS group has developed a suite of search
tools13 that allow a user to enter anm/z value of interest and view
a list of matching structure candidates, along with a list of
calculated neutral loss ions and other high-probability product
ions. The MS prediction tools are currently available for a
number of different categories of lipids: glycerolipids, glycero-
phospholipids, cardiolipins, and sphingolipids. In each case, all
possible structures corresponding to a list of likely head groups
and acyl, alkyl ether, and vinyl ether chains have been expanded
and enumerated by computational methods to generate a table
containing the nominal and exact mass for each discrete structure
as well as additional ontological information such as formula,
abbreviation, and numbers of chain carbons and double bonds.
This tabular data are then uploaded into category-specific
database tables, making them amenable for online querying.
The MS prediction tools for glycerolipids and glycerophospho-
lipids have been extended by computing production ion masses
for commonly observed fragments corresponding to acyl chain
ions, neutral loss of acyl chains, loss of water, head group-specific
fragmentations, and combinations of the above.

The MS prediction tools for glycerolipids, cardiolipins, and
glycerophospholipids accept an m/z value from the user for the
precursor ion and have a menu to allow selection of the ion mode

([M + H]+, [M + NH4]
+, [M � H]�, etc.). In addition, a

mass tolerance window and a head group (in the case of
glycerophospholipids) may be specified to limit the number of
matches. The list of matches may also be filtered by specifying a
particular set of radyl chains (for example, only chains with even
numbers of carbon atoms). On completion of a search, the
output format (Figure 16) contains a list of structures (a) that
satisfy the input criteria and (b) whose side chains belong to the
list of radyl chains used to populate the database. The predicted
masses of the fragment ions are computed at run-time by the
online application. All entries in the result set are hyperlinked to
the structure drawing application, enabling “on-demand” visua-
lization of the molecular structures. Isotopic distribution profiles
for each structure may also be viewed online. The online tools
allow batch-mode searches of lists of precursor ions and intensity
values which may be copied and pasted into the user interface.
Users may perform searches where the matched ions are
displayed in “bulk” format (e.g., PE(34:1), TG(54:2)) or as
discrete molecular species (e.g., PE(16:0/18:1(9Z)), TG(18:0/
18:1(9Z)/ 18:1(9Z))). Additionally, in the case of experimental
samples where the relative amounts of the acyl groups of
glycerolipids and glycerophospholipids are already known (e.g.,
from fatty acid methyl ester (FAME) analysis by GC), these data
may be entered, and a scoring algorithm then ranks the matched
species on the basis of the relative abundance of those acyl chains

Figure 17. Stand-alone Windows application, LIPID MAPS MS prediction tools, for predicting possible molecular species for a given MS ion. The
application enables a user to enter the m/z value of an unknown lipid ion and predict the most likely molecular species. It is available for download at
www.lipidmaps.org/tools/index.html.
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in each lipid. As mentioned above, the current versions of the
LIPID MAPS MS prediction tools employ databases of mass
permutations for the lipid classes of interest, but it is certainly
possible to replace the database with user-specified lists of
chains/head groups and perform all mass matching calculations
in “real time”. This type of option would be useful in cases where
the sample of interest contains lipids with rare or unusual side
chains such as those encountered in bacteria or invertebrates.

A stand-alone Windows application has also been developed
(Figure 17) for predicting possible molecular species for a given
MS ion. In contrast to the online tools which query a database
table of masses corresponding to structural permutations for
each lipid category, the stand-alone application (http://www.
lipidmaps.org/tools/index.html) first computes these masses
from first principles using a list of commonly occurring side
chains and head groups typically found inmammalian versions of
glycerolipids, glycerophospholipids (including cardiolipins), and
sphingolipids. This application enables a user to enter the m/z
value of an unknown lipid ion and predict the most likely
molecular species. There are separate user interfaces for glycero-
lipids, glycerophospholipids, cardiolipins, sphingolipids, fatty
acids, and cholesteryl esters. There is also a user interface to
calculate the exact mass of glycerophospholipid and glycerolipid
ions with defined side chains and head groups, along with a
display of the isotopic distribution profile.

5.2. Presentation of MS Data
The LIPID MAPS consortium has placed an emphasis on

online presentation of MS data to maximize the level of inter-
activity with other Web-based resources such as lipid/gene
databases and experimental protocols. Recent studies by the
LIPID MAPS consortium. have quantified over 550 different
lipids from mouse macrophage cells2 and almost 600 lipids from
human plasma70 using MS and statistical bioinformatics techni-
ques. This ability to simultaneously assess the metabolic dy-
namics of hundreds of lipid species reveals a wealth of
information regarding the cellular lipidome. On a more general
scale, the LIPID MAPS consortium has embarked on a time-
dependent study of a wide range of lipid classes in mouse
macrophage cells, in response to stimulation by a number of
agonists such as Kdo2-lipid A (KLA), adenosine triphosphate
(ATP), and 25-hydroxycholesterol. Large-scale integrated stud-
ies have been carried out on both cultured cells such as the
RAW264.7 cell line and on primary cells such as thioglycolate-
elicited peritoneal macrophages (TGEMs) and bone-marrow-
derived macrophages (BMDMs). Quantitative data from these
experiments are being used to validate existing lipid networks and
elucidate novel interactions. MS quantitative measurements
from time-course experiments on the various categories of lipids
are obtained from the individual LIPIDMAPS cores inMicrosoft
Excel or text format. These heterogeneous formats are then
imported into a common data format prior to processing and
conversion into Oracle database tables. Data on different cell
samples (biological replicates) and/or different MS runs
(technical replicates) for each lipid species are consolidated. A
middleware layer composed of a Web server and PHP/Perl
scripting has been deployed to create a Web-based user interface
with the MS data stored in an Oracle database. All calculations
used to display averages of technical and biological replicates, as
well as all standard error of the mean (SEM) and standard
deviation calculations are performed via Structured Query Lan-
guage (SQL) code. All online data displays were integrated with

the LIMS system (via sample barcodes) and the LIPID MAPS
structure database (via LM ID identifiers where applicable),
allowing seamless navigation across both data and metadata. A
software drawing component called dynamic graphics (GD;
http://www.boutell.com/gd/) was used to generate online
graphs “on-the-fly”, in response to user input. The database
schema design was optimized for access speed and high data
integrity. A set of online query and display tools were developed
to allow the end-user to viewMS time-course data in a number of
different formats (Figure 18). These include tabular and graphi-
cal displays of data as averages of technical and biological
replicates, as well as “drill-down” links to the corresponding
LIMS metadata (cell samples) and structure/classification in-
formation (analytes). All lipidomic and gene array data generated
by the LIPID MAPS consortium are available in the “Resources/
Data” section of theWeb site.5With a view to enabling lipidomics
researchers to identify discrete lipid species, an online library of
lipid standards, including tandemmass spectral data generated by
the LIPID MAPS core facilities, has been made available on the
LIPID MAPS Web site. This database currently consists of over
550 analytes spanning the 8major lipid categories with annotated
diagnostic product ion identifications and with links to molecular
structures andMS acquisition protocols used to generate the raw
spectra (http://www.lipidmaps.org/data/standards/index.html).

6. MODELS OF LIPID METABOLISM AND PATHWAYS

Pathways may be broadly described as models that character-
ize movement of material through a network of molecular species
and processing steps. They serve as the basis upon whichmuch of
the new field of systems biology must be built. Many tools have
become available over the past 10 years for enabling biological
pathway construction.71 Their construction has been stimulated
by the growth in information resulting from adoption of new
laboratory tools accompanying high-throughput data acquisition,
such as mass spectrometry.1b,72 The process of constructing
pathways requires ready access to information in the form of
experimental data of a quantitative nature. The use of reference
model pathways as starting points for new work, as well as
inclusion of well-characterized compounds in pathway schemes,
is also of great importance.

Lipids play central roles in energy storage, cell membrane
structure, cellular communication, and regulation of biological
processes such as inflammatory response, neuronal signal trans-
mission, and carbohydrate metabolism. Organizing these pro-
cesses into useful, interactive pathways and networks represents a
great bioinformatics challenge. The KEGG consortium main-
tains a collection of manually drawn pathway maps73 represent-
ing current knowledge on the molecular interaction and reaction
networks, several of which pertain to lipids, including fatty acid
biosynthesis and degradation, sterol metabolism, and phospho-
lipid pathways. Additionally, the KEGG Brite74 collection of
hierarchical classifications includes a section devoted to lipids
where the user can select a lipid of interest and view reactions and
pathways involving that molecule. A number of category-specific
lipid pathways have been constructed, notably SphinGOMAP,75

a pathway map of approximately 400 different sphingolipid and
glycosphingolipid species.

In general, the field of metabolomics involves inducing
perturbations to the ongoing state of living systems and subse-
quently monitoring changes to compounds at specific time
points. The interactions among components of a pathway are
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then inferred by a variety of techniques, including metabolite
fingerprinting and profiling, and by comparison between organ-
isms that have been genetically perturbed or subjected to altered
nutritional states.71c,d

A recent review of pathway editing tools76 points out that a
major function of pathway visualization tools is to enable new
insights into biology. The choice of a program depends upon the
task to be accomplished. For example, a tool may be selected on
the basis of the nature of the data to be examined or whether
mathematical modeling or statistical analysis is to be performed.

An important function of pathway editor programs, in general,
is to permit exchange of pathways. Different file format standards
exist for this purpose. They include KEGG Markup Language
(KGML),77 SBML,53b BioPAX,52 and CellML.78

To construct pathways, the LIPID MAPS Bioinformatics core
is using two pathway editing tools: VANTED79 and the LIPID
MAPS Pathway Editor, which is based upon a toolkit referred to
as the BioPathways Workbench.53a,80These tools read data from
files and/or directly from databases and enable viewing of
experimental data in the drawing panel. Most importantly, they
enable setting node appearance on an individual basis, thus
providing important visual clues as to the roles of the molecular
species in the pathway. The Pathway Editor presents measure-
ment data according to experiment and enables detailed viewing
of data that may be selected on the basis of the treatment,
reproducibility of the measurements, and other, more qualitative
aspects, in the judgment of the user. Both Pathway Editor
(Figure 19) and VANTED (Figure 20) have Java-based GUIs
providing a comprehensive range of viewing and import/export
formats.

Various methods are employed in constructing pathways. For
example, a user may position a node in a pathway on the basis of

whether the measured data that are presented meet expectations
according to domain knowledge, including early or late respon-
siveness to a stimulus, and the magnitude of the response.
Automated selection and layout, including filtering nodes based
on quantitative or qualitative features, are also commonly used.
The LIPID MAPS project has manually adapted mouse and
human pathways relating to lipid metabolism from various
sources and made them available for downloading through the
Pathway Editor for viewing and modification.

7. STATISTICAL ANALYSIS, CORRELATIONS, AND IN-
TEGRATION OF GENOMIC AND LIPIDOMIC DATA IN
MACROPHAGES

From a systems perspective, the genome, metabolome, and
proteome provide the complete parts list which can be used to
reconstruct networks. However, in a given context, the entire
parts list may not be of relevance. Hence, context-specific data,
such as gene microarray or other types of genomic data,
metabolomic data, and proteomic data obtained from specific
experiments, can be used to obtain a refined (sub) parts list using
various statistical analyses such as identification of significantly
regulated genes and analysis of variance (ANOVA). Such a
refined parts list serves as the starting point for network
reconstruction by integration of experimental data and legacy
knowledge.81 The tools for network reconstruction include
pathway enrichment analysis for studying pathway-level subglobal
changes, motif discovery for coregulated genes, and correlation
analysis for comparing different gene, proteins, or metabolites.
Nextgen sequencing methods are now beginning to provide very
accurate transcript measurements and will no doubt be used in
gene expression studies. Once the transcriptomic changes are

Figure 18. Scheme for online data display of time-course results.
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deciphered from the mapping of sequence tags, strategies such
as the ones described for analogue microarray experiments can
be used.82 In this section, various bioinformatics tools used for
analyzing different types of data and their integration are discussed.
Where appropriate, the data and studies from mouse macrophage
RAW264.7 cells in LIPID MAPS have been used for illustrative
purposes.

7.1. Identification of Significantly Regulated Genes
Gene microarray experiments provide a cost-effective way of

studying the whole-genome-level response of the cell or tissue
system. While there are about 30 000 genes in the mouse and
human, in any experimental/treatment condition, only a small
fraction of these genes show significant changes as compared to
the normal (untreated) condition. The naive approach to iden-
tify which genes are significantly regulated would be to use a
cutoff on the ratio of the intensities for treatment versus control
conditions. However, due to the differences in the hybridization
efficiency of different probes for the genes, a wide range of image
intensity values are obtained across the whole genome. Coupled
with the measurement noise and other effects, the large intensity
range makes it difficult to use a single threshold for different
genes on the ratio of the intensities between the treatment
and control conditions. Hence, in the past 15 years, several

approaches have been developed for the analysis of transcrip-
tomic data to account for the wide intensity range across the gene
chip. Variance modeling with prior exponentials (VAMPIRE),83

CyberT,84 and Linear Models for Microarray (LIMMA) data85

techniques are commonly used to identify the significantly
regulated genes. VAMPIRE involves modeling the global var-
iance structure of array data in the context of a Bayesian frame-
work. CyberT employs statistical analyses based on regularized t
tests that use a Bayesian estimate of the local variance among
gene measurements. Both VAMPIRE and CyberT are available
as Web applications. LIMMA uses linear models for the analysis
of differentially expressed genes and is available as a part of the
Bioconductor project (http://www.bioconductor.org/) in R
programming language (http://www.r-project.org/). These
methods are able to detect gene expression changes with only
two array replicates.

In the analysis of LIPID MAPS microarray data in RAW264.7
cells upon KLA and compactin (an HMG-CoA reductase
inhibitor86) treatment, CyberT was applied.2 Figure 21 shows
the number of significantly regulated (up- or down-regulated)
genes at various time points. In this analysis, a gene is identified as
significantly regulated if its p-value is less than 0.01. Generally,
multiple testing correction methods such as the false discovery rate
(FDR) andBonferroni correction are used for further refinement.87

Figure 19. Pathway Editor showing the mouse arachidonate pathway and time-course data mapped in heat map format displayed under the lipid and
enzyme (gene) nodes. Samples of RAW264.7 cells (a tissue cell line derived from mouse macrophages) were treated with KLA for times ranging from
0 to 24 h. Shown are ratios (pmol/μg of DNA) formetabolites and ratios of normalized intensity for RNA spots with respect to untreated control cells.2,80.
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In this data set, compactin showed mild transcriptomic response.
Bonferroni and FDR corrections were too stringent for this data
set and resulted in no significantly regulated genes. Thus, to find
the top significantly regulated genes, no further correction was
applied. For further analysis, one may also use a cutoff of 2.0 on
the fold change to generate a refined list of significantly regulated
genes.

Ultimately, the utility of any combination of microarray plat-
form and analytical method is determined by how well statistical
predictions are matched by experimental validation. For expres-
sion analysis, quantitative polymerase chain reaction (QT-PCR)
assays are performed. LIPID MAPS investigators have several

hundred validated PCR primers for genes that are of particular
interest to them. These primers are used to validate results of
microarray experiments. While not comprehensive, sufficient
probes are available to determine whether different analysis
methods provide reliable results. Validation of microarray experi-
ments in RAW264.7 cells for several genes using QT-PCR is
discussed in a recent study.2

7.2. ANOVA
The t test is sufficient to compare between two conditions,

namely, control or untreated samples and stimulated or treated
samples. Hence, methods such as VAMPIRE, CyberT, and

Figure 20. VANTED application showing the mouse arachidonate pathway and time-course data mapped in heat map format displayed under the lipid
and enzyme (gene) nodes.
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LIMMA can identify the differentially regulated genes between
two conditions corresponding to a single treatment. However, in
the case of multiple treatment experiments or experiments at
several time points, the above approaches cannot delineate the
effect of different treatments on a particular gene or other
measurements. It is necessary to separate the effect of different
treatments or the time component to draw rational conclusions
from the data. This task is accomplished by the ANOVA
approach, which has been widely used to deconvolute the effect
of different treatments. In ANOVA, the observed variance in the
measured data is partitioned into the effect of individual factors
or treatments.88 If necessary, terms corresponding to the inter-
actions among different factors can also be included in the
variance partitioning model. Similar to statistical tests such as
the t test (used by VAMPIRE, CyberT, etc.), in ANOVA, a p-
value is assigned to the effect of different factors included in the
model. ANOVA can be used to factor out the significance of
different treatments or time effects on any experimental mea-
surements such as genes,89 proteins,90 and metabolites.2 ANO-
VA can also be used for the identification of significantly
regulated genes as well89 because for the case of one factor with
only two possible values for the factor (e.g., control vs single
treatment), ANOVA (called one-way ANOVA) and an unpaired
t test are equivalent, although this cannot account for the effect of
intensity range on the measure of variance, a hallmark of
techniques such as CyberT and VAMPIRE. In LIPID MAPS
studies, ANOVA was applied to transcriptomic and lipidomic
data from RAW264.7 cells upon KLA and compactin treatment
to separate the effect of KLA and compactin on the genes or
lipids.2 In a previous study relating to network reconstruction,
ANOVA was applied on the measurement of phosphorylation
states of signaling proteins and cytokines to find putative lumped
connections from the stimuli to the signaling pathways or
cytokine regulation.90 Another study suggests that there is
potential for further analysis of the ANOVA results by perform-
ing multivariate analyses such as principal component analysis
(PCA) on the interaction terms for different factors91 to find out
if such interactions may be significant under certain conditions.
Biplots from PCA may also aid in visualization and interpret-
ation of results. More recently, the combined approach of

ANOVA�PCA has gained considerable attention from statisti-
cians, especially when three or more factors need to be
analyzed.92 Their utility for analyzing data with only two treat-
ments may be limited.

7.3. Gene Ontology and Pathway Enrichment Analysis
The differentially regulated features obtained from any statis-

tical test must be interpreted biologically. In this direction, GO
and pathway enrichment analysis is prevailing significantly.
These analyses identify which processes and pathways are
affected significantly as compared to what would be expected
by chance in the experiment. There are many tools available as
software or Web applications. For example, AmiGO,93 Goby
(part of the VAMPIRE suite)83a and Database for Annotation,
Visualization and Integrated Discovery (DAVID)94 are available
as Web applications. SubpathwayMiner is available as a part of
the Bioconductor project in R programming language.95 This
database-driven application stores annotation data from several
sources, namely, GO, KEGG, TRANSFAC96 and Biocarta.97 In
addition, it can be easily updated with user-defined annotation
lists.83a Most of these applications use hypergeometric distribu-
tion or the Fisher exact test to compute the enrichment
likelihoods.

Goby was used extensively in the analysis of gene expression
data in RAW264.7 macrophages.2 Some of the results for the
microarray data from RAW264.7 cells in the KLA/compactin
study are listed in Table 5, which shows that the majority of
the genes from the KEGGToll-like Receptor (TLR) pathway are
up-regulated. Other pathways relevant to inflammation, such as
Jak-Stat, NF- kB, and cytokine�cytokine receptor interaction
KEGG pathways, are also significantly enriched.

7.4. Sequence Motif Discovery
Identification of transcription factor binding sites (TFBSs) or

motifs has been a challenge in the area of bioinformatics. The de
novo discovery of the motifs requires the availability of TFBS
databases and state of the art software tools. JASPAR98 and
TRANSFAC96 have been good resources for obtaining the
position weight matrices (PWMs) for several hundred transcrip-
tion factors (TFs). There have been two approaches in the use of
alignment for motif discovery. The first approach compares the
TFBS alignment on the promoter sequence with the alignment
on a random sequence based on the adenine (A), thymine (T),
cytosine (C), and guanine (G) composition of the genome.99

The second approach compares the enrichment of TFBS align-
ment in the target set with that in the background set.100

On the basis of the second approach, a novel computational
method to identify regulatory motifs in coregulated genes
was developed. The method builds on previous efforts to find
DNA motifs that discriminate between the foreground (i.e.,
coregulated) and background promoter sequences, allowing
both positive and negative binding information to be harnessed.
The algorithm attempts to find a motif that has maximal
enrichment in foreground sequences relative to background
sequences. Enrichment is found by considering the overlap of
genes in the foreground with genes that contain the motif, using
the hypergeometric distribution to calculate the probability of
this overlap by chance. The algorithm works by exhaustively
checking short motifs of a given length for enrichment between
foreground and background promoter sequences, keeping the
highest scoring motifs. The highest scoring motifs are then used
as seeds to a greedy optimization algorithm that creates degen-
erate probability matrices that maximize the enrichment of the

Figure 21. Time course of the number of regulated genes in RAW264.7
cells stimulated with KLA, compactin, and KLA + compactin.
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motif in the positive set of sequences. This formulation requires
surprisingly few assumptions, offering a natural description of
motif quality that is applicable to a variety of problems such as
finding binding sites that are associated with changes in gene
expression or chromatin immunoprecipitation (ChIP) chip
results. An application of this method to identify enriched motifs
in the promoters of genes induced by KLA in RAW264.7 cells
from the time-course experiment is shown in Figure 22.

Three of the most highly enriched motifs identified by this
method correspond to binding sites for transcription factors that

were previously established to mediate responses to TLR4
activation: NF-kB, interferon response factors (IRFs), and
activator protein 1 (AP-1)/activating TF (ATF)/cAMP re-
sponse element-binding (CREB) family members. Furthermore,
many of the genes identified as having NF-kB, interferon-
responsive sequence element (IRSE), or AP-1/CREB sites were
shown to be direct targets of these TFs by conventional assays,
providing one line of validation for this method. In con-
trast, conventional motif discovery methods failed to identify
NF-kB or AP-1/ATF-1/CREB binding sites in transcriptionally

Table 5. Global KEGG Pathway (Mouse) Enrichment Analysis of RAW264.7 Cells Treated with KLA, Compactin, or KLA +
Compactina

Sr. no. KEGG path ID pathway name total no. of genes ligand regulation type 30 min 1 h 2 h 4 h 8 h 12 h 24 h

1 04060 cytokine�cytokine receptor interaction 237 KLA up 10 24 40 56 61 53 39

down 1 2 7 11 8 9 13

compactin up 0 2 13

down 7 4 3

KLA + compactin up 10 25 32 51 62 51 40

down 0 1 4 8 10 11 13

2 04620 Toll-like receptor signaling pathway 96 KLA up 9 17 25 30 33 27 24

down 1 2 7 4 5 2 8

compactin up 0 7

down 3 1

KLA + compactin up 9 19 19 31 32 26 25

down 0 3 5 3 4 3 6

3 04010 MAPK signaling pathway 261 KLA up 17 26 30 34 51 45 45

down 1 6 8 19 21 13 15

compactin up 15

down 1

KLA + compactin up 14 27 27 32 57 42 48

down 0 6 7 13 12 10 12

4 04920 adipocytokine signaling pathway 64 KLA up 5 11 13 11 13 13 17

down 0 0 3 5 2 3 3

compactin up

down

KLA + compactin up 3 11 10 11 15 14 15

down 0 1 0 4 2 1 3

5 04621 NOD-like receptor signaling pathway 59 KLA up 8 15 21 23 26 22 20

down 0 1 1 1 2 1 2

compactin up

down

KLA + compactin up 7 15 16 25 24 21 20

down 0 1 1 0 0 1 2

6 04630 Jak-STAT signaling pathway 145 KLA up 5 11 26 34 37 31 31

down 1 2 6 7 1 2 5

compactin up 1

down 2

KLA + compactin up 4 10 19 28 42 35 30

down 0 4 2 6 2 1 4

7 04514 cell adhesion molecules (CAMs) 146 KLA up 16 22 24 24 26

down 1 6 8 6 8

compactin up 2 3 10

down 0 0 1

KLA + compactin up 9 24 27 25 30

down 1 6 7 8 8
aThe number of genes regulated (up/down) is listed for each time point for the three experiments (p e 0.05).
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activated genes. One of the interesting features of the enrichment
plot illustrated in Figure 22 is the temporal windows in which
IRF3/ISRE motifs and AP-1/ATF/CREB motifs appeared.
These data have implications for understanding how the complex
transcriptional response to TLR4 activation is regulated in a
time-dependent manner. Several other sequence motifs are
identified by this motif method in the set of lipopolysaccharide
(LPS) responsive genes and provide the basis for a series of new
studies to identify roles of other classes of transcription factors in
regulating the genome-wide response to TLR4 signaling.

7.5. Processing and Analysis of Proteomic Data
A novel, MS-based approach for the relative quantification of

proteins, relying on the derivatization of primary amino groups in
intact proteins using isobaric tags for relative and absolute
quantitation (iTRAQ) was used to measure relative protein
intensities in RAW264.7 cells in the presence or absence of
KLA. The technique is based on chemically tagging the N-ter-
minus of peptides generated from protein digests that were
isolated from different samples, e.g., KLA-treated cells and
control cells.101 The two labeled samples are then combined,
fractionated by nano-LC, and analyzed by tandem mass spectro-
metry. Database searching of the peptide fragmentation data
allows identification of the labeled peptides and hence the
corresponding proteins. Due to the isobaric mass design of the
iTRAQ reagents, differentially labeled proteins do not differ in
mass; accordingly, their corresponding proteolytic peptides
appear as single peaks in MS scans. Fragmentation of the tag
attached to the peptides generates a low molecular mass reporter
ion that is unique to the tag used to label each of the digests.
Measurement of the intensity of these reporter ions enables
relative quantification of the peptides in each digest and hence
the proteins from which they originate. The iTRAQmethod was
used to measure relative protein levels in three samples of
RAW264.7 cells treated with KLA for 24 h and three correspond-
ing control cell samples. Protein KLA/control (K/C)ratios were
then compared to messenger ribonucleic acid (mRNA) ratios
generated from gene array experiments on RAW264.7 cells.
Statistical analyses using covariance plots of the 24 h protein
ratio data with mRNA ratios at multiple time points established a
maximal correlation at 18 h, as would be expected when one
considers the time lag between transcription and translation
(Figure 23).

A high correlation between mRNA and protein KLA/control
ratios was observed for those proteins whose ratios were
increased or decreased 2-fold or more. A disadvantage of the
“shotgun” LC�MS approach used in these iTRAQ experiments
is the lack of sensitivity for detection of low-abundance proteins.
A tagged tryptic digest of the entire cell extract is applied to the

LC column, and due to sample complexity and a large range in
protein concentrations, only about 25% of proteins (as compared
to gene array experiments) are detected. A consequence is that
many enzymes involved in lipid metabolism are not detected by
the iTRAQ method. This disadvantage could be overcome by
employing additional purification steps prior to LC�MS, such as
subcellular fractionation and affinity chromatography. In addi-
tion, this methodology is capable of detecting proteins with post-
translational modifications, providing another level of informa-
tion with regard to function and activity.

7.6. Correlation Analysis
Pearson correlation is widely used to findwhich variables show

similar changes across different experiments or time points.102

Pearson correlation coefficients can also be used to perform
hierarchical clustering103 and generate correlation networks.104

Such networks may capture some aspects of the causality among
variables or factors. A more elaborate discussion on the issue of
correlation versus causality is presented elsewhere.105 Pearson
correlation has also been used, at least conceptually, in various
ways in data-driven network reconstruction106 using an approach
such as least-squares or principal component regression90 and
partial least-squares.107 Correlation analysis has been applied to
various biological systems to elucidate how different molecular
components function in a network and to understand their
phenotypic similarities and differences. Some examples are
succinctly described below.

Fiehn andWeckwerth108 have presented an interesting review
on how the data on gene, protein, and metabolite measurements
are correlated, resulting in complex networks. A related minire-
view is presented by Steuer et al.109 They have also used
metabolite�metabolite correlation analysis-based clustering
and PCA to develop and visualize data-derived metabolic
networks.110 The visualization approach also includes a clique
finding algorithm for improved interpretation. Recently, they
have used PCA and partial least-squares analysis for feature
extraction to differentiate between the responses of different
metabolites in rice to a bacterial pathogen.111 Schmitt et al.112

have used correlation between time-lagged data on genes to
develop gene interaction networks. They have used gene expres-
sion time-course data under different light conditions and were
able to find several gene groups containing light-stimulated gene
clusters, such as Synechocystis sp. photosystems I and II and
carbon dioxide fixation pathways. Numata et al.113 have used
mutual information as a nonlinear correlation metric. They have
shown that the mutual information-based analysis was able to

Figure 22. Identification of NF-kB, ISRE, and AP-1/ATF/CREB
binding sites in KLA-stimulated genes in RAWmacrophages. Blue color
indicates significant enrichment of the motif in promoters of positively
regulated genes for each time point.

Figure 23. Covariance plot between 24 h protein data from iTRAQ
measurements and gene array data at various time points (only proteins
with a K/C ratio of >1.5 were chosen).
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uncover some nonlinear relationships undetectable by the
Pearson coefficient-based analysis in a data set from Arabidopsis
thaliana. Fukushima et al.104a have also used correlation networks
and a graph-clustering approach to find modules using data from
three Arabidopsis genotypes, namely, Col-0 wild type, methio-
nine overaccumulation 1, and transparent testa4, in samples of
roots and aerial parts.

To analyze the LIPID MAPS data, Pearson correlation was
used to find the similarity between two time courses.102 In
RAW264.7 cell experiments, the time course for gene data or
lipid data consisted of eight time points (including the value at
t = 0 h). The correlation value can be thought of as the cosine
of the angle between the normalized time-course curves
(z-scores). Some details previously used in such analyses are
presented below.
7.6.1. Gene and Lipid Data. For the genes, the ratio of the

value under the treatment condition to the value for the control
condition was used at each time point. To compute the correla-
tion between the time course for the lipids and the time courses
for the genes in the same pathway (curated list of genes for each
lipid pathway as listed on the LIPID MAPS Web site (http://
www.lipidmaps.org/pathways/vanted.html) or the list of genes
from KEGG pathways), the ratios to control values were used for
the lipids as well. The time points for the lipids and the genes
were 0, 0.5, 1, 2, 4, 8, 12, and 24 h.
7.6.2. Consideration of Time Delay. Since it is the enzyme

or the protein level that may affect the time course of the lipid, in
the absence of specific knowledge for individual genes, a time
delay of 4 h corresponding to the time taken for mRNA
translation, post-translational modification, and protein translo-
cation was used for gene data.
7.6.3. Weighted Correlation. Since the measurements are

taken at nonuniform time intervals (more frequently at the
beginning and less frequently at later time points), a weighted
correlation in which the time points were weighted proportional
to the time interval is more appropriate than the raw correlation
described above. Assuming a weight vector,W = [w1, w2, w3, w4,
w5, w6, w7, w8], the weighted correlation was computed as
follows.2

First, the weighted mean, weighted standard deviation, and
weighted z-score (n = 8, the number of time points) were
computed, and then the weighted dot product was computed:

mean : X̅w ¼ ð∑
n

i¼ 1
wixiÞ= ∑

n

i¼ 1
wi, Y̅w ¼ ð∑

n

i¼ 1
wiyiÞ= ∑

n

i¼ 1
wi

standard deviation : σ̅x,w

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∑

n

i¼ 1
wiðxi � X̅wÞ2Þ= ∑

n

i¼1
wi

s
; similarly; compute σ̅y,w

z-score : Xz,w ¼ ðX � X̅wÞ=σ̅x,w, Yz,w ¼ ðY � Y̅wÞ=σ̅y,w

correlation : rw ¼ ð∑
n

i¼ 1
wiðXz,wÞiðYz,wÞiÞ= ∑

n

i¼ 1
wi ð1Þ

In the above, for convenience, the weight vectorW was normal-
ized to the unit sum as wi =wi/∑i = 1

n wi at the beginning so that the
division by ∑i = 1

n wi is not explicitly required in the above
expressions.
The above equations are easily extended for two data matrices,

X and Y, with several rows in each where rows correspond to
different genes or lipids and the columns correspond to different
time points as in the above equations.

7.6.4. Data Values To Be Used with the Weighted
Correlation. Linear interpolation of data in each time interval
was used as an approximation to the scenario where data were
measured at equal time intervals. Hence, the mean value of the
data in the time interval (i.e., (xk + xk+1)/2 for the kth time
interval) was used.
7.6.5. Lipid and Gene Categories. Lipid�gene correlation

was performed for six different lipid pathways, namely, eicosa-
noids in the media and sphingolipids, sterols, glycerolipids,
glyrecophospholipids, and unsaturated fatty acids inside the cells.
For the LIPID MAPS specific curated gene list, the pathways
used included eicosanoid biosynthesis, sphingolipid biosynthesis,
cholesterol biosynthesis, glycerolipid/glycerophospholipid bio-
synthesis, and fatty acid biosynthesis. In each selected pathway,
only those genes which show significant regulation (differential
expression) at one or more time points, computed using
CyberT,84 were used. More details can be found elsewhere.2

7.6.6. Display of the Data and Correlations. For the
display of the data and the correlation, correlation-based hier-
archical clustering103 was used to lay out the variables (lipids
and/or genes) so that the rows corresponding to the variables
with high correlation were displayed near each other in the heat
map for the data. The Statistics/Bioinformatics toolbox of
Matlab114 was used to perform the computations. Using the
hierarchical clustering tools, clusters were identified (distance
method = user-specified weighted correlation (eq 1), linkage
method = average, cutoff criterion = distance, cutoff = 0.75). It
can be noted that a correlation range of [�1 1] corresponds to
the equivalent distance range of [2 0] (d = 1� r). Therefore, the
cutoff of 0.75 on the distance corresponds to a cutoff of 0.25 on
the correlation. When applied to the lipid�gene data sets, each
cluster may have one or more genes and lipids. Some clusters
may include no genes or no lipids (but not empty).
The interesting clusters are those which have at least one gene

and one lipid since they indicate that such genes and lipids are
changing together and serve as a target for investigating causal
relationships. In the case of lipid�gene correlations, the informa-
tion flow was from the genes (proteins/enzymes) to the lipids
(after accounting for the time delay). Using this strategy, it would
be possible to generate correlation-based directed graphs. The links
between two lipids or two genes would then be bidirectional.
For illustrative purposes, the heat map for the data for the

eicosanoids (measured in the media) is shown in Figure 24. The
prostaglandin lipids (e.g., prostaglandin (PG) E2 (PGE2), PGJ2,
and PGF2α) and the prostaglandin synthase genes (Ptgs2, Ptges)
changed in a similar manner, resulting in strong correlation
between them. The mechanistic relationship between these
genes/enzymes and their corresponding products is shown in
the pathway diagram of Figure 20; e.g., production of PGE2 was
catalyzed by the enzyme corresponding to the gene prostaglan-
din E synthase (Ptges). Similarly, the correlation analysis be-
tween various sterols and the genes for cholesterol biosynthesis
suggested that its precursors and its several derivatives covary
with the mRNA of HMG CoA reductase (Hmgcr) and choles-
terol 25-hydroxylase (Ch25h). Correlation analysis between the
sphingolipids and related genes has shown that several sphingo-
lipids are coclustered with the important genes in the pathway,
including serine palmitoyltransferase (Sptlc1, Sptlc2) and cer-
amide synthases (CerS) Lass4 and Lass6.2 At a semisystemic
level, these results had suggested that the joint-correlation
analysis can potentially uncover such underlying physical
mechanisms.
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8. QUANTITATIVE KINETIC MODELS OF LIPID
METABOLISM

All biological processes are inherently dynamical systems.
Thus, the use of systems biology approaches is becoming
common in the study of metabolic and other networks to
elucidate their functions and roles in human health and diseases.
Toward this end, several software systems have been developed
which allow various types of modeling and analysis, such as
steady-state analysis, kinetic modeling, parameter estimation,
sensitivity analysis, metabolic control analysis, stochastic simula-
tion, and consideration of spatial variation (partial differential-
equation-based modeling). An extensive list of such software

systems is available at the SBML Web site.53 Some of them are
CellML (http://www.cellml.org/,115 JSim (http://nsr.bioeng.
washington.edu/jsim/docs/overview.html), VCell (http://www.
nrcam.uchc.edu/;116), Systems Biology Workbench (http://sys-
bio.org/;117), COPASI (http://www.copasi.org/;118), and MCEll
(http://www.mcell.cnl.salk.edu/119). Their salient features are
summarized in Table 6. All these software systems have some
capability to plot and visualize the results of simulation. This
comparison, although simple and concise, can help the
modeler choose the appropriate software application. The
majority of the software systems allow the modeling of
signaling and metabolic pathways as a biochemical reaction

Figure 24. Heat map for the data for eicosanoids (measured in the media) and eicosanoid biosynthesis related genes. Reprinted with permission from
ref 2. Copyright 2010 American Society for Biochemistry andMolecular Biology. The four panels correspond to (1) data based on the ratio of values for
treatment with KLA to the values for control experiments, (2) the ratio of compactin treatment to the control, (3) the ratio of treatment with both KLA
and compactin to the control, and (4) ratio data from (1)�(3) combined. The data in each row are scaled and offset by the t = 0 value. The names of the
lipids/genes displayed on the y- and/or x-axis are listed in different colors to indicate the clusters.
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system. Most of them have SBML import/export capability,
although the information related to pathway/network visua-
lization may be lost during SBML export, a common problem
relating to the interoperability of most such software
applications.

Among many metabolic pathways, there has been tremen-
dous progress in modeling of glucose metabolic networks.
Several researchers have developed genome-scale metabolic
networks for different organisms such as Saccharomyces cerevi-
siae, Escherichia coli, and humans.120 There have been efforts in
the modeling of signaling pathways as well. Some of the
examples include modeling of the mitogen-activated protein
(MAP) kinase pathway,121 regulation of the cell cycle,122 and
calcium signaling.123 Some of the above approaches are also
being used to study plant metabolism. Fiehn et al. have worked
extensively on metabolite profiling and their analysis for A.
thaliana.124

Due to the complexity of lipid metabolism, and the paucity of
data for its many metabolites, there are only a few models of lipid
metabolism available in the literature. For example, Callender
et al. have developed a model of diacylglycerol dynamics in the
RAW264.7macrophage.125 Yang et al. have developed amodel of
arachidonic acid (AA)metabolism in human polymorphonuclear
leukocytes.126 Only two models of sphingolipid metabolism are

found in the literature, one by Alvarez-Vasquez et al.127 for yeast
and one by Henning et al.128 (the cell system was not specified).
All of these models suffer from the unavailability of suffi-
ciently large data sets. Though there are several enzymes for
which activity data are available (Table 7), their number is still
significantly smaller than the numbers of enzymes in the
pathways.

Toward a comprehensive study of lipid metabolism, the
LIPID MAPS consortium69 has quantified the global changes
in lipid metabolites (“lipidomics”). Using LIPID MAPS data,
context-specific pathway models were developed for several lipid
categories by integrating the legacy knowledge and experi-
mental data on lipid changes in macrophages upon KLA
stimulation.4a,129 A central question that can be addressed
through quantitative measurements of lipids as a function of
time is the flux of metabolites through the cellular network. This
is possible as the rate of change of the metabolite concentrations,
which can be computed directly from the time-course data, is
related to its fluxes corresponding to the different reactions. This
enables the development of kinetic models for several lipid
pathways. Once the kinetic model is developed and the rate
parameters are estimated, the reaction fluxes (and their relative
distribution in different branches of the network) can be
computed. It is useful to note that, in most kinetic modeling

Table 6. Representative List of Different Software Systems for Quantitative Simulation and Analysis of Biological Systemsa

tasks allowed (all these software systems have the capability of plotting/visualization of results)

deterministic simulation stochastic simulation

software

well-mixed system

(ODEs)

spatial modeling

(PDEs)

well-mixed

system

spatial modeling (reaction

diffusion)

sensitivity

analysis

parameter scan/

estimation

submodel

import

CellML/

OpenCell

√ √
b

√

JSim
√ √ √ √

Virtual cell
√ √ √ √ √

COPASI
√ √ √ √

MCell
√

(3D)

SBW
√ √

b
√ √ √

a SBW = Systems Biology Workbench. bThis capability is available by interfacing with other software systems.

Table 7. Representative List of Lipid Metabolism Related Enzymes for Which Kinetic Data Are Available in the BRENDA
Database136

KEGG pathway enzyme name (EC number) specific activity [(μmol/min)/mg]

arachidonic acid metabolism prostaglandin-D synthase (5.3.99.2) 14.9�434.0

leukotriene-A4 hydrolase (3.3.2.6) 0.185�0.49

sphingolipid metabolism 3-dehydrosphinganine reductase (1.1.1.102) 0.000121

serine C-palmitoyltransferase (2.3.1.50) 0.000044

ceramide glucosyltransferase (2.4.1.80) 0.0000082

sphinganine kinase (2.7.1.91) 2.0 � 10�6 to 2.4 � 10�4

ceramide kinase (2.7.1.138) 4.0 � 10�9 to 1.41 � 10�6

steroid biosynthesis sterol O-acyltransferase (2.3.1.26) 2.22 � 10�5 to 1.56 � 10�4

glycerolipid metabolism glycerol-3-phosphate O-acyltransferase (2.3.1.15) 1.3 � 10�4 to 0.192

diacylglycerol O-acyltransferase (2.3.1.20) 3.0 � 10�4 to 0.169

glycerophospholipid metabolism choline kinase (2.7.1.32) 0.000139

acetylcholinesterase (3.1.1.7) 7700
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studies on biochemical pathways, generic values for the rate
parameters are used because system- and context-specific values
are lacking. As we have illustrated in a previous review,105 lack of

such specific rate parameter values is a major challenge in com-
putational systems biology. However, in the LIPID MAPS study,
due to the availability of a large amount of data (about five data
points per unknown rate constant), the rate constants were
estimated with good accuracy.129 A matrix-based approach and
optimization was used to estimate the rate constants using experi-
mental data and known network topology from the literature while
ensuring that the rate constants are positive. Modeling of the
eicosanoid pathway is presented as an example. More details can
be found elsewhere.129 The network model used, which includes
only the measured metabolites, is presented in Figure 25.

8.1. Kinetic Model and Parameter Estimation
A kinetic model was developed for the simplified lipid

network involving AA metabolism.129 The reaction rates were
described by linear or law of mass action kinetics. Thus, the flux
expressions obtained from this scheme were linear in rate
parameters and nonlinear in metabolite concentrations. The
matrix-based approach to estimate the rate constants is de-
scribed below in terms of the reaction numbers labeled in
Figure 25 and listed in Table 8. The metabolite concentrations
were known, and the rate parameters were unknown. Hence,
the following ordinary differential equations (ODEs) describ-
ing the rate of change of concentrations of metabolites can be
rearranged in a matrix format as shown in eq 2 for [PGH2] and
[PGD2]:

d½PGH2�
dt

¼ k10½DG�½AA� þ k11½LPS�½AA� þ k12½AA�

� k13½PGH2� � k15½PGH2� � k17½PGH2�

d½PGD2�
dt

¼ k17½PGH2� � k18½PGD2� � k19½PGD2�

where the rate constants ki (i = 10, 11, 12, 13, 15, 17, 18, 19) are
as defined in Table 8.

Figure 25. LPS/KLA-stimulated eicosanoid metabolism and signaling pathway. The numbers above the arrows are reaction numbers (Table 8), and default
degradation reactions are not labeled. Black lines represent lipidmetabolism, and red lines indicate signaling pathways.Metabolites and enzymes are represented
as rectangular and oval boxes, respectively. Themeasured and unmeasuredmetabolites are differentiated by thick and thin borders, respectively. Purple color is
used for eicosanoids and green for glycerolipids and glycerophospholipids. Reprinted with permission from ref 129. Copyright 2009 Elsevier Ltd.

Table 8. Estimated Parameter Values for the EicosanoidModela

no. reaction parameter name value

1 [LPS] FA f AAb k1 355.637

2 FA f AA k2 10�15

3 DG f AA k3 10�15

4 AA fc,d k4 10�15

5 [DG] GPCho f AAb k5 10�15

6 [LPS] GPCho f AAb,e k6 0.330

7 GPCho f AA k7 10�15

8 AA f HETE k8 0.007

9 HETE f k9 0.187

10 [DG] AA f PGH2f k10 0.024

11 [LPS] AA f PGH2 k11 0.111

12 AA f PGH2 k12 0.098

13 PGH2 f PGE2 k13 0.204

14 PGE2 f k14 10�15

15 PGH2 f PGF2a k15 0.061

16 PGF2a f k16 10�15

17 PGH2 f PGD2 k17 3.116

18 PGD2 f PGJ2 k18 0.054

19 PGD2 f dPGD2 k19 0.029

20 dPGD2 f k20 0.014

21 PGJ2 f dPGJ2 k21 0.034

22 dPGJ2 f k22 0.116
aReprinted with permission from ref 129. Copyright 2009 Elsevier Ltd.
b [DG] and [LPS] indicate the effect of signaling (molecules) in the reaction.
cXfmeans default degradation of the metabolite X. dThe unit of the first-
order reaction is 1/h. eThe unit of the second-order reaction is 1/h when it
involves either FA or LPS as one of the metabolites as we have used a scaled
profile for these variables. fThe unit of the second-order reaction is μg of
DNA/(ratio of intensity� h) when it involvesDGas one of themetabolites.
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X is completely known. The left-hand side of the equations
(matrix Y) was computed using discretization and the experi-
mental data. To avoid singularity during matrix inversion and to
require positive values of the rate parameters, a constrained least-
squares approach was used (Matlab114 function lsqlin). The
parameter values thus obtained were used as good initial values
for further refinement by using generalized constrained non-
linear optimization (Matlab function fmincon). The objective
function for use with fmincon was

min
K,X0

w1 ∑
nsp

i¼ 1
ð∑

nt

j¼ 1
ðyi, j, exptl � yi, j, predðK,X0ÞÞ2Þþ
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 !2
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A

0
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1
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ð3Þ
where nt is the number of time points, nsp is the number of species,
K indicates the parameters (rate constants), and X0 indicates the
initial conditions (species concentrations). The first term represents
the fit error between the experimental and predicted concentrations,
and the second term represents the fit error between their experi-
mental and predicted derivatives. Different weights (wi) can be
assigned to these two terms to improve the fit. The initial
concentrations of the metabolites were also optimized in a narrow
range around the experimental values.When data onmore than one
condition were available, then all the data were used to compute the
fit error by simulating the model several times individually and
minimizing the objective function collectively.

Table 8 lists the reactions and the corresponding estimated
reaction rate parameters included in the model. Figure 26 shows
the simulation results.129 For most time points, the difference
between the predicted and experimental data was within the SEM
(Figure 26). Thus, a good fit to the data from both treatment and
control conditions suggested that the topology of the simplified
network was correct and captured the important metabolic and
signaling effects. The model was validated by excluding the data on
one of the intermediate metabolites from objective function mini-
mization. The rate parameters were estimated, and the predictions
were compared with the actual experimental data. There are two
intermediate metabolites present in the network: PGD2 and PGJ2.
The validation was performed on both of the metabolites, and
satisfactory results were obtained. Parametric sensitivity analysis was
also performed.129 In short, for each parameter and eachmetabolite,
a monotonic increase or decrease or no change was observed
depending upon the respective location of the parameter and the
metabolite chosen in the network. The change in the parameters
belonging to the upper part of the network produced a larger change

in almost all metabolites as compared to those for the parameters
belonging to the lower part of the network.

8.2. Time-Scale Analysis
Time-scale characterization is important to understand the

metabolite dynamics and its response time.129 The analysis for
the AA metabolism model was performed by computing eigen-
values and eigenvectors of the Jacobian matrix of ordinary
differential equations at the steady-state conditions. Time-scale
analysis has been used previously to find the slow and fast modes
in nonlinear dynamical systems.130 Characteristic time constants
(time scales) are the inverse of the eigenvalues since the dynamic
response of the system for small perturbation from the steady
state consists of exponential terms such as exp(�λt), λ being an
eigenvalue.131 As a consequence, if all the eigenvalues have a
negative real part, then the dynamic system would be stable, and
also, if some of the eigenvalues are complex, then the system will
exhibit sustained or unsustained oscillatory response for small
perturbations. In the time-scale analysis of the AA metabolism,
the eigenvalues were split into three broad ranges. For each
eigenvalue, the metabolites with substantial contribution to the
corresponding eigenvector were identified. Depending upon the
eigenvalues and metabolites significantly contributing to the corre-
sponding eigenvectors, these metabolites were divided into three
categories as listed in Table 9.Medium-time-scalemetabolites go up
and return to the basal levels in 24 h; however, the slow-time-scale
metabolites show monotonic increases up to 24 h (Figure 26).

8.3. Comparison of Rate Parameters for the Enzymes
The values for the rate constant for the enzyme cyclooxygenase

(COX) reported in the literature were based on in vitro measure-
ments with partially purified proteins.132 Thus, it was assumed that
the literature values represented its basal activity, and these activities
(flux through the enzyme) were compared with predicted activities
of these enzymes in the “control” simulation. The computed value
(10�13 (μM/min)/cell) and reported value (10�14 (μM/min)/
cell) for COX are within 1 order of magnitude.133

8.4. Stable Isotope Labeling for Improved Characterization
of Fluxes

Stable isotope labeling of one key metabolite in a given
metabolic pathway introduces pointwise (specieswise) perturba-
tion in the network. For system identification purposes, labeling
is equivalent to exciting the system, which helps decipher the
network topology. Stable isotope labeling can be used to
differentiate, in the production of metabolites in the downstream
parts of the above network (Figure 25), the contribution of the
metabolite that is labeled from the contribution by other
metabolites. The propagation network of the labeled metabolite
is less complex than the original propagation network. Thus,
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using labeled data, the reaction rate parameters can be estimated
with better accuracy. Labeled data help identify alternate/new
pathways.134 Furthermore, it provides a more direct approach of
computing fluxes and estimating the split ratios at branch points.
Mass balance can be used to detect the leakage through unmodeled
pathways, and potential connections between two different parts of
the pathway can be detected. Deconvoluting the spectra in the
context of lipid metabolites to identify peaks has been discussed
previously.134a The main source of complexity in modeling labeled
data is the presence of feedback loops.135 When reactions result in
elongation or breakdown of one or more chains of labeled carbon
atoms or result in other structural changes, labeling of multiple
carbon atoms changes even if all the carbon atoms in the original
labeled metabolite were 13C. These complexities need to be taken
into account in using labeled data in kinetic modeling studies.

9. PERSPECTIVE AND FUTURE OF LIPIDOMICS

Although the field of lipidomics is relatively young, quantita-
tive estimation of lipids over a wide dynamic range is already
possible, and comparative analysis of lipid compositions and
concentrations between normal and pathological tissues is

beginning to yield rich insights into lipid-associated mechanisms
of pathology. With next-generation mass spectrometers, meth-
ods for quantitative identification of lipid molecular species and
context-specific association of lipid species with proteins in-
volved in biosynthesis and metabolism and the concomitant
genes encoding these proteins, several lipid-specific pathways
will be reconstructed in the future. These pathways will help
delineate the physiological function of cells and tissues, in
conjunction with associated cellular signaling and transcriptional
changes, in normal and pathological conditions. The early efforts
serve as a harbinger for the integration of lipids as important
molecular players in physiology and pathophysiology, leading to
integrative systems biology approaches to describing function.

The challenges for lipidome bioinformatics and systems
biology are manifold. With increasing ability to catalog lipids,
the number and diversity of lipid species will increase dramati-
cally. The classification of these lipids and their organization and
most importantly characterizing their functional role will form a
significant part of the lipidomics future. Most importantly, the
quantification of lipids in a contextual manner, i.e., identifying
small differences between lipids under two different conditions,
normal and pathological or untreated and treated tissues, will
form a significant challenge even with the availability of stan-
dards. Characterization of lipids in vivo is a daunting task, and
despite advances in imaging mass spectrometry, image and data
analysis to quantify specific lipids will require novel methods.

To study differences between normal and pathological sam-
ples, it is not adequate to merely measure and quantitate lipid
species. It will be important to decipher and study the biochem-
ical pathways associated with biosynthesis and metabolism of
lipids and to study the fluxes associated with lipid changes with
disease or treatment. The fluxes will also reveal hitherto unchar-
acterized pathways. Isotopomer experiments are one route to

Table 9. Results of Eigenvalue-Based Time-Scale Analysis of
the Metabolitesa

fast (∼1 h) medium (∼10 h) slow (∼50 h)

PGH2 AA PGE2
PGD2 PGF2α
HETE PGJ2

dPGD2

dPGJ2
aReprinted with permission from ref 129. Copyright 2009 Elsevier Ltd.

Figure 26. Simulation of kinetic modeling of the simplified lipid network: fit of the predicted response (control and treatment with KLA) to the
corresponding experimental data. In the legend, “Ctrl” refers to control and “Trt” refers to KLA treatment of RAW264.7 cells. The error bars shown on
the experimental data are the standard error of the mean. Reprinted with permission from ref 129. Copyright 2009 Elsevier Ltd.
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deciphering the unknown pathways. Using labeled data, the
reaction rate parameters can be estimated with better accuracy.
Labeled data help identify alternate/new pathways.134 Further-
more, they provide a more direct approach of computing fluxes
and estimating the split ratios at branch points.

Proteins, genes, and lipids act in combination in pathways to
create biological function. The key challenge for systems
biology lies in the integration of proteomics, genomics, reg-
ulatory genomics, and metabolomics data to provide a context-
specific systems-level perspective on phenotypic responses of
living systems to stimuli. Identifying all the parts lists, such as
the cellwide or tissuewide lipidome, is only a first step and needs
to be significantly extended to identify interactions, mechan-
isms, and pathways. While traditional statistical methods can be
applied to each type of data, e.g., gene expression, proteomics,
or lipidomics, the integration across these data to provide
mechanistically meaningful models continues to be a difficult
challenge. Correlation methods and analyses suggest mechan-
istic connections, but have no foundation for causal relation-
ships. Use of prior knowledge can provide useful constraints in
developing network models, but also has the potential to bias
the analyses of data to yield false connections and pathways.
Dynamic measurements, when analyzed in context, can provide
causal links, but for these to be accurate the density of
measurements across time needs to be very high. Synergistic
measurements of all components and “ome-integrated” recon-
struction of pathways is essential for providing a mechanistic
model. Even then, this model needs to have the dynamic
element, which can only be obtained by time-varying measure-
ments at necessary and sufficient granularity. Once such a
dynamic model is created, the scope exists for quantitative
modeling using physical principles to obtain predictive input�
response relationships.

In developing computational models of biological processes,
there is a growing realization that given the enormous complexity
of biochemical interactions and paucity of data (as compared to
how much data is required to uniquely identify the networks and
parameters), unique networks would be seldom obtained in data-
driven network identification. When manageable, this degener-
acy in network reconstruction is not necessarily bad because it
provides new and alternate hypotheses that can be further tested
by knockout and pathway inhibition (intervention) studies, thus
leading to the refinement of the network models. To date, most
approaches to incorporate prior knowledge into network model-
ing are based on the Bayesian network or its variants. Can prior
knowledge be systematically included in deterministic ap-
proaches (e.g., state�space formulation) as well? In all like-
lihood, the answer is yes. Such a framework must be able to
operate on the network topology and the parameters simulta-
neously. It will require the ability to manipulate the topology, the
complex expressions for the postulated cause�effect relation-
ships, and the corresponding model parameters simultaneously.
It is imperative that such an approach will require nonlinear
optimization methods. Given the complexity of nonlinear opti-
mization, stochastic-search-based approaches are expected to be
more practical for such an application.105

It is anticipated that in the coming decades several models of
lipid metabolic and signaling networks will be developed and
systems biology approaches will provide predictive approaches to
input�response relationships in cellular function. The tools of
informatics and systems biology will be valuable in this research
landscape.
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