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ABSTRACT

Background: Macrophage activation by lipopolysaccharide and ad-

enosine triphosphate (ATP) has been studied extensively because this

model system mimics the physiological context of bacterial infection

and subsequent inflammatory responses. Previous studies on macro-

phages elucidated the biological roles of caspase-1 in post-transla-

tional activation of interleukin-1b and interleukin-18 in inflammation

and apoptosis. However, the results from these studies focused only

on a small number of factors. To better understand the host response,

we have performed a high-throughput study of Kdo2-lipid A (KLA)-

primed macrophages stimulated with ATP.

Results: The study suggests that treating mouse bone marrow-

derived macrophages with KLA and ATP produces ‘synergistic’ ef-

fects that are not seen with treatment of KLA or ATP alone. The syn-

ergistic regulation of genes related to immunity, apoptosis and lipid

metabolism is observed in a time-dependent manner. The synergistic

effects are produced by nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB) and activator protein (AP)-1 through regula-

tion of their target cytokines. The synergistically regulated cytokines

then activate signal transducer and activator of transcription (STAT)

factors that result in enhanced immunity, apoptosis and lipid metab-

olism; STAT1 enhances immunity by promoting anti-microbial factors;

and STAT3 contributes to downregulation of cell cycle and upregula-

tion of apoptosis. STAT1 and STAT3 also regulate glycerolipid and

eicosanoid metabolism, respectively. Further, western blot analysis

for STAT1 and STAT3 showed that the changes in transcriptomic

levels were consistent with their proteomic levels. In summary, this

study shows the synergistic interaction between the toll-like receptor

and purinergic receptor signaling during macrophage activation on

bacterial infection.
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1 INTRODUCTION

Lipopolysaccharide (LPS) is an endotoxin from bacterial cell
wall that stimulates leukocytes via a toll-like receptor (TLR)-4
pathway (Peck et al., 2004). Kdo2-lipid A (KLA) is an active
component of LPS with an analogous response (Raetz et al.,
2006) in activating macrophages. The TLR-4 signaling pathway
ultimately mediates the release of pro- and anti-inflammatory
factors by activating mitogen-activated protein kinase cascade,
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) and/or activator protein (AP)-1 (Maurya et al., 2013;
Raetz et al., 2006; Rutledge et al., 2012). In this study, we have
primed macrophages with KLA before stimulation with ATP.
KLA priming represents bacterial exposure, which elicits subse-
quent release of ATP in the extracellular space from inflamed,
damaged or dying cells. ATP then acts via autocrine and para-
crine signaling and is interpreted as a ‘danger signal’ by immune
cells. These events induce the transcription of pro-inflammatory
mediators through the transcription factors (TFs) NF-kB and
AP1 (Junger, 2011). Interestingly, a model system of ATP stimu-
lation of LPS-primed macrophages exhibited increased cell death
compared with the macrophages treated with either ATP or LPS
alone (Mehta et al., 2001; Pfeiffer et al., 2007). The increased
apoptosis, caused by LPS and ATP treatment, was reduced
with caspase-1 inhibitors but not with mitogen-activated protein
kinase, protein kinase (PK)-C, or PK-A inhibitors (Mehta et al.,
2001; Pfeiffer et al., 2007). In addition to LPS and ATP treat-
ment, there have been a number of studies on LPS-primed
macrophages stimulated by various ligands including air par-
ticles, lysophosphatidic acid, interferon (IFN)-!, IL-4 and toxi-
cants (El Chartouni and Rehli, 2010; Glaser et al., 1993; Griffiths
et al., 1995; Gupta et al., 2010; Imrich et al., 1999; Le Feuvre
et al., 2002; Pelegrin et al., 2008; Pestka and Zhou, 2006; Uehara
et al., 2002). Moreover, sequential activation of one or more
TLR receptors by their respective ligands was studied in LPS-
primed macrophages (De Nardo et al., 2009; Ilievski and Hirsch,
2010). Most of these studies showed the importance of selected
genes or cytokines in LPS-primed macrophages to mimic the
biological context of bacterial infection and subsequent
immune response.
In addition to the cytokine response, LPS-stimulated macro-

phages showed changes in lipids such as eicosanoids, sphingo-
lipids, sterols, glycerolipids and glycerophospholipids (Chang
et al., 2001; Dennis et al., 2010; Desanctis et al., 1994; Drapier
and Petit, 1986; Hauton and Evans, 2002; Knapp and English,
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2000; MacKichan and DeFranco, 1999; Rovina et al., 2010;
White et al., 1988). Each of these lipids has distinct roles in
various physiological processes and diseases. For example, pros-
taglandins play important role in inflammation; sphingolipids
regulate cell proliferation and apoptosis; and sterols play a cen-
tral role in atherosclerosis (Wymann and Schneiter, 2008). The
changes to each of the lipid categories, therefore, are important
mediators in bacterial exposure. However, no previous macro-
phage study considered transcriptomic and lipidomic changes
during KLA and ATP treatment in a time-dependent manner.
In this work, we have studied KLA-primed macrophages sti-

mulated with ATP in high-throughput transcriptomics and meta-
bolomics (lipidomics) experiments. The goal of the work was to
analyze the lipidomic and transcriptomic changes. In particular,
we performed enrichment analysis and TRANSFAC"

(Wingender et al., 1996) mapping on differentially regulated
genes and showed the distinct roles of STAT1 and STAT3 on
apoptosis, immunity and lipid metabolism.

2 METHODS

2.1 Transcriptomic and lipidomic data

Transcriptomic and lipidomic data were generated in mouse bone
marrow-derived macrophages (BMDM) over 7 time points, 0.25, 0.5, 1,
2, 4, 8 and 20h, with three different stimulus conditions: 2mM ATP (A),
100ng/ml KLA (K) and KLA/ATP (KA) treatments by the Lipid
Metabolites and Pathways Strategy (LIPID MAPS) consortium
(Dennis et al., 2010; Subramaniam et al., 2011). To confirm the activation
of macrophages, TNF-a was used as a marker (Guerra et al., 2003;
Tonetti et al., 1995). For the KA group, treatment with K was performed
4h before treatment with A; this was done to mimic the biological phe-
nomenon of KLA activation preceding ATP release as a ‘danger signal’
from immune cells (Supplementary Fig. S1). For the transcriptomic data,
two biological replicates were measured with dye swap using Agilent
custom microarrays. The arrays contained 45214 spots with 38838
unique probes and 21676 unique mouse genes. The data were normalized
using the locally weighted scatterplot smoothing (Lowess) method (Yang
et al., 2002). For lipidomic data, three biological replicate experiments
were carried out using liquid chromatography and mass spectrometry
techniques. The detailed protocols are described in LIPID MAPS Web
site (http://www.lipidmaps.org/protocols/index.html).

2.2 Statistical analysis

2.2.1 Regulated list of probes and genes To identify significantly
regulated probes, variance modeling-based t-test (implemented as Cyber-
T) was used (Baldi and Long, 2001). Cyber-T uses a Bayesian estimate of
the variance among the probe intensities. We applied Cyber-T in two
different ways. In the Case I analysis, a paired t-test was used to find
the differentially regulated probes between treatment and its control
group (Fig. 1). In the Case II analysis, an unpaired t-test was used to
identify the probes that are differentially regulated between single and
combined treatment groups; specifically, KA data were used as the treat-
ment group and K or A data as control group. For this analysis, the raw
intensity values of K, A and KA data were used under the assumption
that the (true) control intensity values are approximately same across the
three conditions (see Section 2.2.2). We chose to use raw intensity values
in the Case II analysis, instead of the fold changes with respect to con-
trols, because variance of the data, used to calculate the t-scores, should
be estimated locally among probes with similar raw intensity values. In
both analyses, a gene was identified as significantly regulated if its asso-
ciated P-value was !0.001. To analyze the differentially regulated probes,

Fig. 1. Differentially regulated gene lists of ATP (A), KLA (K), and
KLA/ATP (KA) groups at 7 time points. (a) Number of significantly
regulated genes for three different treatment groups with respect to
their controls, (b) Venn diagram of three different treatment groups
with respect to their controls from Case I analysis, and (c) Venn diagram
of the KA group versus the A or the K group from Case II analysis and
(d) Number of Case II synergistic genes in enriched KEGG pathways by
time point(s), y-axis represents number of regulated genes
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we mapped them to their Entrez gene IDs and obtained the unique list of
genes. Probes mapping to the same gene, but with opposite regulated
expression, were removed from further analysis.

Generally, multiple testing correction methods (Dudoit and Laan,
2008) such as false discovery rate (FDR) and Bonferroni correction are
used for refining P-values. However, we did not use either correction
methods for the following reasons: Bonferroni correction was deemed
too stringent, and FDR created a problem in identifying the list of regu-
lated genes for early time points in A data. For example, FDR did not
produce any significantly regulated gene for 15 or 30min in the ATP
treatment because of low number of differentially regulated genes at
those time points.

2.2.2 Outlier detection One of the key assumptions in using an un-
paired t-test for the treatment gene expression values in the Case II ana-
lysis is the stability of the (true) control expression values across the
different ligand groups (K, A and KA). However, in some cases a
probe’s control value for one of the ligands was significantly different
from the other two, causing the t-test results to be misleading. To address
this issue, the Grubbs test for outliers (Grubbs, 1950) was used on the
(true) control expression values to identify potential outliers. Probes were
removed from statistical analysis if one of their control values was more
extreme than either twice or half the mean of all three control values. The
second test was necessary to ensure that the results from the Grubbs test
did not overestimate the number of potential outliers because of the small
sample size (N¼ 3). The condition for the Grubbs test is given below:

max
i ¼ 1, . . . ,N
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The hypothesis of no outliers was rejected if the above condition is satis-
fied where !Y is the sample mean, s is the standard deviation, N is the
sample size and ta/(2N),N#2 is the critical value of t-distribution. We used a
P-value threshold of 0.05. For further information, see Supplementary
Table S1.

2.2.3 Functional enrichment analyses Enrichment analysis was per-
formed to identify the significance of the changes in the differentially
regulated genes based on different biological processes. Gene Ontology
(Ashburner et al., 2000) and Kyoto encyclopedia of genes and genomes
pathways (Kanehisa and Goto, 2000) were used to identify overrepre-
sented annotation groups by comparing a ‘selected’ list with a ‘back-
ground’. A comprehensive gene list of the microarray was considered
as a background. The hypergeometric distribution was used to find the
exact probabilities to compute enrichment likelihoods (Hsiao et al., 2005):
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where b is the number of ‘background’ genes annotated with the term/
pathway, s is the number of ‘selected’ genes annotated with the term/
pathway, N is the total number of ‘background’ genes and k is the total
number of ‘selected’ genes.

2.2.4 TF-target gene mapping TRANSFAC" Release 2010.4 data
were used as the source for TF—target gene information. For each time
point, the TFs in the differentially regulated list of genes were selected
and mapped to their subset of target genes that were also differentially
regulated at the same or a later time point. As there are 7 time points,
there exist 21 iterations [n (n# 1)/2, where n¼ 7 time points]. The regu-
lated network was created and visualized using GraphViz (www.graphviz.

org) and/or Cytoscape (www.cytoscape.org). Upregulated genes are col-
ored red (or solid nodes) and downregulated genes are colored green (or
dashed nodes); the time points 1, 2, 3, 4, 5, 6 and 7 represent 0.25, 0.5, 1,
2, 4, 8 and 20h, respectively (Fig. 2).

2.2.5 Correlation/clustering of lipid profiles Pearson correlation is
used to find the similarity between two time courses (Anderson, 1984;
Egghe and Leydesdorff, 2009). For our data, we used a weighted correl-
ation, in which the time points were weighted in proportion to the pre-
ceding time interval, because the measurements were taken at non-
uniform time intervals (Dennis et al., 2010). For example, the earlier
time points had less weight because the measurements were taken more
frequently in the beginning than at the end (Subramaniam et al., 2011).
Assuming a weight vector of W ¼ ½w1,w2,w3,w4,w5,w6,w7), the
weighted mean, the weighted standard deviation, the weighted z-score
and the correlation were computed as follows (where n¼ 7, the number
of time points):
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The above equations were extended for two data matrices X and Y, with
the rows representing different genes or lipids and the columns represent-
ing different time points. Correlation-based hierarchical clustering
(Langfelder et al., 2008) was used to lay out the variables (lipid concen-
trations or gene fold changes) in the data heat map. The data shown are
the differences in treatment versus control values scaled by the maximum
absolute value of each row. The statistics/bioinformatics toolbox of
Matlab" (Mathworks, 1994) was used to perform hierarchical clustering
with the customized correlation defined earlier in the text [parameters:
linkage-method¼ average; cut-off criterion¼ distance (¼1# r); cut-
off¼ 0.40]. Different colors for the names of the lipids indicate the clus-
ters (Fig. 3).

3 RESULTS

We used paired t-test between experiments and control (Case I
analysis) and unpaired t-test between the three treatments
(Case II analysis) to identify differentially regulated genes (see
Section 2). The results from the paired t-test in the Case I ana-
lysis showed few significantly regulated genes in the A group at
15min (0.25 h), with the number increasing from 15min to 4 h
and then decreasing (Fig. 1a and b). In the case of K and KA
groups, 4 h priming with K before the first measurement affected
many genes, so that the number of significantly regulated genes
at 15min was*3000. In the K group, the number of significantly
regulated genes peaked at 30min (equivalent to 4 h 30min after
treatment with K) and decreased substantially after 30min. In
contrast, the KA group showed the number of regulated genes to
remain high for most of the time points.
To identify the similarities and the differences across the dif-

ferent treatments, Venn diagrams were drawn for all the time
points (Fig. 1b and Supplementary Table S2). The results sug-
gested that there is a significant number of regulated genes
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unique to the KA treatment (zone c in the Venn diagram), not
regulated in either the K or the A treatment alone. However,
Case I analysis has two problems. The first problem relates to
false ‘KA-unique’ genes that showed up as differentially regu-
lated genes in the KA treatment because of slight differences in
P-values near the threshold. For example, a gene with a P-value
just below the threshold in the KA treatment, but just above it in
the K or A treatment, would, erroneously, be identified as unique
to the KA treatment. The second problem relates to missed ‘KA-
unique’ genes, genes differentially regulated in all three treatment
groups, but significantly more regulated in the KA group than in
the K or the A group as a result of synergistic effect. To circum-
vent these problems, the Case II analysis of the unpaired t-test
between the treatment groups was adopted.
In the Case II analysis, two independent unpaired t-tests were

performed: between KA and K groups, and between KA and A
groups. The results from the first t-test produced the list of
the genes that are differently regulated in the KA group com-
pared with the K group. These genes were either affected by A
or synergistically affected by KA (Fig. 1c, circle ‘A’). Similarly,
the genes from the second t-test were either affected by K or
synergistically affected by KA (Fig. 1c, circle ‘K’). The intersec-
tion between the two t-test results, then, produced the list of
genes that are differently regulated in the KA group compared
with both the K and the A groups (Fig. 1c, intersection ‘aik’).
Uniquely regulated genes in the KA group were categorized into
synergistic and antagonistic subsets based on the direction
and the magnitude of the regulation in the two comparisons.
‘Synergistic regulation’ is used here in a less restricted man-
ner to include genes significantly regulated by KA as compared
with K and A alone. This view includes but goes beyond the
traditional definition of synergism (Chou, 2010); this approach

was taken to identify all the genes regulated by both K and A.
A gene was considered to be synergistically regulated if its
regulation in the KA group versus both the K and the A
group was significantly higher or lower. For example, a gene
that shows a 10-fold change in the KA group but only 5-fold
changes in both the K and the A group was considered to
be synergistically upregulated. Other possible cases of the
synergistic effect are defined in Supplementary Figure S2. On
the other hand, a gene was considered to be antagonistic if its
regulation in the KA group was upregulated with respect to the
K group but downregulated with respect to the A group, or
vice versa.
Pathway enrichment for the Case II synergistic genes was done

for all the time points to find the pathways that are synergistic-
ally affected by the KA treatment. Figure 1d shows the histo-
gram of the number of regulated genes for all the time points in
selected top enriched pathways. TFs from the Case II synergistic
set of genes were also mapped to the subset of their target genes,
which showed synergistic regulation at the same or future time
points (Fig. 2). For Case I, TF-target genes mapping, see
Supplementary Figure S3. The results of Case II analyses are
presented here.

3.1 Signaling pathways

Pro- and anti-inflammatory cytokines: K and/or A signaling cas-
cades include NF-kB and AP1 effector molecules in the activa-
tion of pro- and anti-inflammatory cytokines (Akira and
Takeda, 2004; Tonetti et al., 1995). In our data, K influenced
AP1 via Jun, whereas A activated AP1 via both Jun and Fos. We
found evidence of synergistic regulation of NF-kB and AP1 in
the KA treatment. NF-kB was synergistically upregulated

Fig. 2. Transcriptional regulatory network of Case II analysis spanning 7 time points (aik region in Fig. 1c). The TF to target interaction data was
obtained from TRANSFAC. Edges between TFs and their targets were assigned when both were synergistically regulated, with the target regulated at
the same or a later time point. The numbers 1, 2, 3, 4, 5, 6 and 7 represent 0.25, 0.5, 1, 2, 4, 8 and 20h, respectively. The red color (or solid nodes)
indicates upregulation and the green color (or dashed nodes) indicates downregulation. Genes discussed in this manuscript are represented as rectangles.
Dashed edge is added manually (see details in Section 4)
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starting from 1h. ATF 1/2/3 and Junb showed statistically sig-
nificant synergistic regulation at 20 h, although evidence of syn-
ergistic regulation was seen from 4h onward. The synergistic
activation of NF-kB and AP1 supported the synergistic effect

in TLR-4 signaling (Fig. 1d, Supplementary Fig. S4). The
activated TLR-4 signaling promoted expression of pro- and
anti-inflammatory cytokines, evidenced by enrichment of the
cytokine–cytokine receptor interaction pathway from 30min
onward (Supplementary Table S3). Interleukins (ILs) are targets
of TLR-4 signaling, and many of them showed, as expected,
synergistic regulation in the KA treatment. For example, pro-
and anti-inflammatory IL-6, IL-10 and IL-12 b were initially
upregulated by CEBPb, NF-kB and AP1 from 1h onward
(Fig. 2). TRANSFAC data mapping (Fig. 2) also shows that
IL-27 was synergistically upregulated by NF-kB and Irf1, IL-
12b by JunB and Fos and IL-18 by Fos.
JAK-STAT signaling pathway: Cytokines such as IL-6, IL-10,

and IFN-b1 activate JAK-STAT signaling pathway via auto-
crine signaling (Murray, 2007). The pathway enrichment
showed that JAK-STAT signaling was upregulated from 1h
onward (Supplementary Table S3). This is due to Jak2 and
STATs, with the exception of STAT6, showing synergistic upre-
gulation at 20 h. In particular, STAT3 was synergistically upre-
gulated as early as 1 h, although statistical significance was not
observed until 8 h. From Figure 2, TRANSFAC mapping
shows that STAT3 synergistically upregulated Ly6a, which is
known to promote phagocytosis by macrophages (Long et al.,
2011). Other members of the Ly6 complex were also synergis-
tically upregulated in the KA treatment. Besides STAT3’s in-
volvement in phagocytosis, STAT1 has been shown to
upregulate anti-microbial/viral factors such as Ly6a, Nos2,
Hamp, Psmb9, TAP1 and Tgtp (Cramer and Klemsz, 1997;
Lafuse et al., 1995; Pagani et al., 2011). Thus, STATs, particu-
larly STAT1 and STAT3, that were synergistically upregulated
in the KA treatment, are the key players in promoting phago-
cytic and anti-microbial functions of macrophages at later time
points.
Cell cycle and apoptosis: Mapping of KA synergistic genes in

the cell cycle pathway indicated that CycH and Myc were syn-
ergistically downregulated in KA (Supplementary Fig. S6). Myc
has been shown to promote cell cycle progression by directly
inducing CycD and sequestration of Kip1 (Amati et al., 1998;
Bouchard et al., 1999). The synergistic upregulation of Bmip1
(an inhibitor of Myc) and Kip1 (an inhibitor of CycA) is con-
sistent with the downregulation of Myc in the KA treatment.
Known upstream inhibitors of cyclins (CycA/B/D/E), such as
GSK3, Ink4d, Kip1/2, Cip1, GADD45b (a target of STAT3)
and 14-3-3#, were also synergistically upregulated. Thus, syner-
gistic upregulation of cell cycle inhibitors and synergistic down-
regulation of cyclins accounted for the synergistic
downregulation of the cell cycle. Pathway enrichment analysis
also showed synergistic upregulation of apoptosis and p53 sig-
naling pathways 1 h onward (Fig. 1d). The number of synergis-
tically regulated genes in these pathways was initially low, but
increased at 20h indicating elevated cell death at later hours.
This analysis observed synergistic upregulation of apoptotic
genes such as caspase 1, 3, 4, 7, 8 and 12, as well as IL-1, FAS
and Apaf1 (Le Feuvre et al., 2002; Supplementary Fig. S5), and
synergistic downregulation of anti-apoptotic genes (Bcl2) at 20 h.
These results are also consistent with the observed reduction in
DNA levels in KA experiments relative to control, K or A ex-
periments (Supplementary Fig. S11).

Fig. 3. Profiles of (a) eicosanoids and (b) sphingolipids. BMDM were
treated with KLA and/or ATP. Heat map of lipid metabolite data
based on time-weighted correlation-based clustering. The red color indi-
cates upregulation and the green indicates downregulation (dinor-PGF2-
alpha: 2,3-dinor-11 b-PGF2a; dPGD2: 15-deoxy-delta-12,14-PGD2;
dPGJ2: 15-deoxy-delta-12,14-PGJ2; DH-PGA2: 13,14-dihydro-15-keto-
PGA2 and DH-PGD2: 13,14-dihydro-15-keto-PGD2)
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3.2 Lipid metabolism

Eicosanoids: Eicosanoids, specifically prostaglandins (PGs),
showed increased production in the KA treatment (Fig. 3a,
Supplementary Fig. S7). The increase in PGs was in agreement
with the observed synergistic upregulation of Ptgs2.
TRANSFAC mapping (Fig. 2) shows that the synergistic upre-
gulation of Ptgs2 was due to CEBPb at early hours and Irf1, Irf2,
Usf1 and AP1 at later hours. Further, Ptges and Alox12 also
showed synergistic regulation at 20 h, consistent with the
increased production of PGE2 and 12-HETE, respectively.
Sphingolipids: Increased concentrations of ceramide (Cer) and

dihydroceramide were observed in the KA treatment (Fig. 3b
and Supplementary Fig. S10). The enhanced synthesis (or accu-
mulation) of Cers can be attributed to the synergistic upregula-
tion of sphingolipid de novo synthesis enzyme, Sptlc2, in the KA
treatment. Although sphingomyelin hydrolysis can also contrib-
ute to Cer levels via the upregulation of sphingomyelin synthase
2, reversible nature of this enzymatic reaction makes its contri-
bution to the production of Cers less clear.
Sterols: The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-

CoA) reductase was upregulated with respect to control in the
KA treatment (Case I analysis), in agreement with the increased
lanosterol and desmosterol in the KA treatment (Fig. 4).
However, the concentrations of these sterols such as lanosterol
and desmosterol were lower in the KA treatment than in the K
treatment for most time points, suggesting ATP is influencing de
novo synthesis of cholesterol and its precursors in KA treatment.
These concentration profiles can be explained by the synergistic
downregulation of several enzymes in the KA treatment involved
in lanosterol and desmosterol synthesis: lanosterol synthase
(Lss), lanosterol 14a demethylase (CYP51A1) and hydroxyster-
oid (17-beta) dehydrogenase 7 (HSD17B7). Furthermore, as seen
in Figure 2 and Supplementary Figures S8 and S9, sterol regu-
latory element-binding protein1 (SREBP1) and SREBP2, known
to regulate fatty acid and sterol biosynthesis enzymes including
Lss, CYP51A1 and HSD17B7 (Rawson, 2003; Shimano, 2001),

are synergistically downregulated. Thus, synergistic downregula-
tion of many genes in the sterol biosynthetic pathway contributes
to reduced concentration profiles of sterols in the KA treatment
compared with the profiles in the K treatment.
Glycerolipids: The profile of triglycerides (TGs), well-known

glycerolipids, in Figure 4 shows an increased level in the KA
treatment with respect to K and A treatments for most of the
time points. These lipidomic data are explained by the synergistic
upregulation of aldehyde dehydrogenase 1 family, member B1
(Aldh1b1), 1-acylglycerol-3-phosphate O-acyltransferase 4
(Agpat4), phosphatidic acid phosphatase type 2B (Ppap2b) and
diacylglycerol O-acyltransferase 1 and 2 (Dgat1 & Dgat2), which
are involved in the production of TGs from glycerols.
Accumulation of TGs can also result from the reduced hydrolysis
of TGs. In particular, lipoprotein lipase (LPL) is the rate-limiting
enzyme for the hydrolysis (lipolysis) of TGs, and its expression
has been shown to be suppressed by STAT1 and activated by
SREBP2 at the transcriptional level (Hogan and Stephens, 2003;
Wang and Eckel, 2009). Synergistic upregulation of STAT1 and
downregulation of SREBP2 can lead to the synergistic down-
regulation of LPL in the KA treatment (Fig. 2), with an expected
reduction in TG hydrolysis contributing to synergistic TGs ac-
cumulation (Fig. 4).

4 DISCUSSION

The activation of macrophages using KLA (or LPS) and/or ATP
has been the subject of long-standing investigations because of
their roles in inflammation, immunity and apoptosis. KLA treat-
ment represents exposure of immune cells to bacteria; subse-
quently ATP is released from macrophages as a ‘danger
signal’. To globally study the macrophage role in inflammation
and immunity, LIPID MAPS performed transcriptomic and lipi-
domic experiments on BMDM treated with KLA and/or ATP.
Although this analysis is based on transcriptomic data, there is
evidence of good correlation between gene and protein levels
(Sabido et al., 2012). We have validated the changes at the tran-
scriptomic level for STAT1, STAT3 and SREBP2 with their
proteomic levels using western blotting (see Supplementary Fig.
S13). KLA (or LPS) treatment is known to release ATP into
extracellular space. This concentration is generally much smaller
than the concentration needed to sufficiently stimulate the
macrophages in vitro and may produce a small amount of
ATP-mediated autocrine signaling. In this analysis, such effects
were ignored. Further, we identified differentially regulated genes
and performed functional enrichment analysis for pathways and
Gene Ontologies, and used TRANSFAC for TF to target gene
mapping.
A time-dependent synergistic regulation of genes in both same

and different signaling pathways and biological processes in the
KA treatment was observed. In particular, both K and A influ-
enced NF-kB and AP1 to produce synergistic regulations at the
signaling level. At the transcriptional level, this synergistic effect
was observed as early as 1h. The synergistic activation of NF-kB
and AP1 can also come from autocrine signaling through IL-1a
or IL-1b. As a result, target chemokines and cytokines of NF-kB
and AP1, such as IL-1, IL-6, IL-10 and Cxcl10, showed syner-
gistic regulation for most of the time points. As IL-10 is known
to inhibit the synthesis of several cytokines, including IFNa, IL-2

Fig. 4. Profiles of sterols and TGs. BMDM were treated with KLA and/
or ATP. The error bars shown for the experimental data represent the
standard error of mean
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and IL-3 (Isler et al., 1999), these cytokines did not show regu-
lation in any of the treatments. TNF-a showed upregulation in
all three cases individually, but in KA, upregulation was reduced
because of A’s inhibitory effect on K-primed macrophages and is
consistent with previous results (Pinhal-Enfield et al., 2003)
(shown with black, Fig. 2). The synergistic regulation of these
cytokines and chemokines then induced a similar regulation of
the cytokine–cytokine receptor pathway from 30min onward
and of the JAK-STAT pathway from 1h onward. These time-
dependent and synergistic regulations are consistent with previ-
ous studies. The enrichment of immediate/early genes and late
response genes (Escoubet-Lozach et al., 2011) was seen at early
and late hours, respectively, in our data (Supplementary Table
S4). The synergistic activation and release of IL-1b, IL-18 and
caspase1 in macrophages treated with LPS and/or ATP were
observed in several previous studies (He et al., 2013; Kavita
and Mizel, 1995). In addition, time-dependent regulation of
TFs and their target genes was also observed. For Example,
Ptgs2 was regulated by CEBPb at early hours and Irf1, Irf2,
Usf1 and AP1 at later hours. Similarly, IL-10 was regulated by
CEBPb at early hours and JunB at later hours. STAT1, SREBP1
and SREBP2 and their targets showed synergistic regulation
at 20h.
The changes at the transcriptional level are also reflected in the

changes in the level of corresponding lipids (Supplementary
Table S5). Eicosanoids, TGs and Cers had higher concentrations
in the KA treatment than in the K or the A treatment and were
consistent with the synergistic upregulation of Ptgs2, Sptlc2 and
Aldh1b1, respectively. In case of the eicosanoids pathway, a
good correlation has been observed between gene and protein
levels in macrophages treated with KLA and KLA/ATP (Sabido
et al., 2012). The accumulation of TGs was further because of
reduced lipolysis and is consistent with a recent study in activated
macrophages (Feingold et al., 2012). In addition, FAS, shown to
be upregulated in the de novo synthesis of sphingolipid and the
apoptosis pathway (Hannun and Obeid, 2008), was also upregu-
lated in this study. Thus, the synergistic upregulation of FAS
may contribute to increased sphingolipid metabolism and ele-
vated expressions of apoptotic genes in the KA treatment. The
synergistic downregulation of SREBP2 and its targets yielded
decreased de novo synthesis of lanosterol and desmosterol in
the KA treatment compared with that in the K treatment.
Pathway analysis and TF-target gene mapping suggest that

STAT1 and STAT3 regulated apoptosis, immunity and lipid me-
tabolism through many important genes directly or through a
regulation cascade. Many STAT1 and STAT3 targets such as
caspase-1, caspase-4, cMyc and GADD45b supported increased
apoptosis and impaired cell cycle progression. Similarly, STAT1
and STAT3 synergistically regulated anti-microbial/viral genes
such as Ly6a, Nos2, Hamp, Psmb9 and TAP1 (Cramer and
Klemsz, 1997; Lafuse et al., 1995; Pagani et al., 2011). Further,
many of the synergistically regulated genes that influence lipid
metabolism were regulated by STATs. For example, a previous
study showed that STAT3 activates CEBPb (Cantwell et al.,
1998); thus, STAT3 upregulated Ptgs2 through CEBPb to in-
crease arachidonic acid production in eicosanoid metabolism.
STAT1 downregulated LPL and promoted accumulation of
TGs because of reduced lipolysis.

Macrophages undergo either classical (M1) activation or alter-
native (M2) activation (Lawrence and Natoli, 2011).
Macrophage polarization is regulated by STAT1 and STAT3
or STAT6. STAT1 regulates the M1 phenotype, whereas
STAT3 or STAT6 regulates the M2 phenotype when macro-
phages are treated with different ligands (Sica and Mantovani,
2012). The synergistic upregulation of both STAT1 and STAT3
reflected a balance between M1 and M2 phenotypes.
Downregulation of STAT-6 (the only synergistically downregu-
lated STAT in KA) suggested STAT6 activation is not required
for M2 phenotype in BMDM, a finding consistent with previous
studies of macrophages (Csoka et al., 2012). Myc also controls a
subset of M2-associated genes (Sica and Mantovani, 2012). The
synergistic downregulation of Myc also suggested a predominant
role of STAT3 in the M2 phenotype.
The synergistic activation of a gene was identified in our ana-

lysis when the fold change was statistically significant. However,
a TF with fold change less than the statistical threshold may
nevertheless be biologically effective and produce a significant
transcriptional change in its target genes. For example, the syn-
ergistic upregulation of STAT3 was not statistically significant
until 8 h but was observable as early as 1 h; the low-fold change
of STAT3 at earlier time points, even if not statistically signifi-
cant, could cause its target, CEBPb, to be synergistically upre-
gulated at 1 h (added as a dashed edge in Fig. 2).
In summary, our analysis suggests that the synergistic acti-

vation of macrophages in the KA treatment occurred through
the activation NF-kB and AP1, which, in turn, activated cyto-
kine release. The cytokine effector functions synergistically
activated STATs, particularly STAT1 and STAT3, that lead
to enhanced immunity, apoptosis and lipid metabolism.
STAT1 played a prominent role in enhanced immunity by
regulating anti-microbial factors. STAT3 was important in reg-
ulating cell cycle and enhancing apoptosis. In addition, STAT1
and STAT3 regulated TGs and eicosanoids metabolism,
respectively. The observed synergistic regulations were time-
dependent, encompassing multiple genes that span key path-
ways related to immunity, apoptosis and lipid metabolism and
highlight the complexity of the combined TLR and purinergic
receptor activation of macrophage activation during bacterial
infection.
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