"IBS 574 - Computational Biology & Bioinformatics" Spring 2018, Thursday (03/22) 2.00-4.00PM

Gene Expression: II RNA-seq data analysis Quality Control, Mapping, Gene Count & Differential Expression

Ashok R. Dinasarapu Ph.D

Scientist, Bioinformatics Dept. of Human Genetics, Emory University, Atlanta

RNA-Seq Exercise:

raw reads to differential expression

https://bitbucket.org/adinasarapu/ibs_class/src

03/27/2018

- 1. Quality Control (QC)
- 2. Mapping (Alignment)

03/29/2018

- 1. Gene count & normalization
- 2. Differential expression

Genome – the haploid set of chromosomes

DNA, the genetic material, is made up of molecules called **nucleotide**s. Each nucleotide contains a phosphate group, a sugar group and a **nitrogen base**. Nitrogen bases Adenine (**A**) and Guanine (**G**) are called purines, while Thymine (**T**) and Cytosine (**C**) are called pyrimidines. The **human genome** contains ~ 3 billion of these **base pairs**, which reside in the 23 pairs of chromosomes within the nucleus of all our cells.

Genome – the haploid set of chromosomes

Human genome length = $3.3 \times 10^9 bp$

DNA, the genetic material, is made up of molecules called **nucleotide**s. Each nucleotide contains a phosphate group, a sugar group and a **nitrogen base**. Nitrogen bases Adenine (**A**) and Guanine (**G**) are called purines, while Thymine (**T**) and Cytosine (**C**) are called pyrimidines. The **human genome** contains ~ 3 billion of these **base pairs**, which reside in the 23 pairs of chromosomes within the nucleus of all our cells.

The central dogma of molecular biology

In multicellular organisms, nearly all cells have the same DNA, but different cell types express distinct proteins.

RNA-seq: a tool for transcriptomics

https://www.gatc-biotech.com

RNA-seq: a tool for transcriptomics

Polyadenylation is part of the RNA processing pathway that leads to the production of mature **mRNA** molecules

Illumina RNA library preparation. PolyA+ RNA is enriched using oligo(dT) beads followed by fragmentation and reverse transcription. The 5' and 3' ends of cDNA fragments are next prepared to allow efficient ligation of "Y" adapters containing a unique barcode and primer binding sites. Finally, ligated cDNAs are PCR-amplified and ready for cluster generation and sequencing.

RNA-seq: a tool for transcriptomics

Sequence detection method of illumina

- A) Illumina detection is fluorescence-based using reversible terminator dNTPs, resulting in one nucleotide incorporation per cycle (Materials Methods, 2013)
- B) DNA sequence tracing and Phred score corresponding to each colored peak.

Phred quality score $(30) = -10 \log_{10} (0.001)$ (99.9% base call accuracy) Probability of incorrect base call = 1 in 1000 (0.001)

RNA-seq: a tool for transcriptomics

Paired-End Sequencing

R1.fastq R2.fastq

Fastq file contains sequence & base quality scores

R1.fastq

+

@HWI-ST1309F:278:C85EBANXX:5:1101:1497:1996 1:N:0:TGGGAGT NGGGGAACTCCTGGTGGACCCTAGTGGAAGCCTTCCAGTAATTTCTTGAAGCTGAGCGCTCAGGTGAGTAGGGCGACATCTGGTG GCCGGTTGTTGAAGG

- ...
- ...

R2.fastq

@HWI-ST1309F:278:C85EBANXX:5:1101:1497:1996 2:N:0:TGGGAGT

CTCAGAGGTGAAGTAACTTGCCCAGGGTTGTAGCCCAGGCCCTTCTCAGGACACGGCTCTCCCAGGGCCTCCGCCTCCCTGCAC TGAGCCCTGCCAGTTC

- ...
- ...
- ...

Fastq file contains sequence & base quality scores

! "#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopgrstuvwxyz{|}~ 33 59 64 73 104 126 -5....9 0.....9..... 3....9..... S - Sanger Phred+33, raw reads typically (0, 40) X - Solexa Solexa+64, raw reads typically (-5, 40) I - Illumina 1.3+ Phred+64, raw reads typically (0, 40) J - Illumina 1.5+ Phred+64, raw reads typically (3, 40) with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold) (Note: See discussion above). L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

R2.fastq

@HWI-ST1309F:278:C85EBANXX:5:1101:1497:1996 2:N:0:TGGGAGT

CTCAGAGGTGAAGTAACTTGCCCAGGGTTGTAGCCCAGGCCCTTCTCAGGACACGGCTCTCCCAGGGCCTCCCGCCTGCAC TGAGCCCTGCCAGTTC

	$\mathbb{E}[\mathbf{C}\mathbf{I}] = \mathbf{I}\mathbf{I} = \mathbf{I}[\mathbf{I}]$
/BBBBFFFBFFFFF	`FFFBFFFFFF/FFFFFFFFFFFFFFFFFFFFFFFFFFF
1	

ASCII (/) char = 47 (decimal) Illumina 1.8+ : 14 (Phred)+33 = 47 (/)

RNA-seq best practices

3 or more replicates

• Biological replicates are recommended rather than technical replicates

Avoid unwanted batch effects

- Always process your RNA extractions at the same time.
- To Avoid lane batch effects, all samples would need to be multiplexed together and run on the same lane

HGPRT deficiency leads to Lesch-Nyhan disease

HGPRT deficiency (in severely affected) leads to

- abnormal accumulation of uric acid
- neurologic disorders and
- behavioral abnormalities

Lesch-Nyhan disease affects about 1 in 380,000 live births.

HGPRT (encoded by HPRT1) is an enzyme in purine metabolism.

HPRT1 gene mutations in 'Lesch-Nyhan' Disease

Lesch-nyhan disease specific iPSCs obtained from fibroblasts

Human iPSCs to model neurologic disorders

- The disorder is so rare that it is difficult to recruit sufficient patients for meaningful studies.
- Autopsied **brain samples** are **difficult to obtain**.
- Established animal models
 have been helpful but species
 differences in purine
 metabolism make it difficult to
 relate to human condition.

Lesch-nyhan disease specific iPSCs obtained from fibroblasts

Lesch-nyhan disease specific iPSCs obtained from fibroblasts

1. Read quality

- 2. Alignment / Mapping
- 3. Gene count & normalization
- 4. Differential expression

1. Read quality

- 2. Alignment / Mapping
- 3. Gene count & normalization
- 4. Differential expression

Basic Statistics

One read

> 50 million reads per sample

Measure	Value
Filename	C8DF6ANXX_1_GSLv3-7_SL146145.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	57154438
Sequences flagged as poor quality	^o P1 footo
Sequence length	
*GC	49

Measure	Value
Filename	C8DF6ANXX_2_GSLv3-7_SL146145.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	57154438
Sequences flagged as poor quality	• R2 fasto
Sequence length	100
*GC	49

Per base & Per sequence quality scores

1	@HWI-ST1309F:276:C8DF6ANXX:1:1 NAAGAAAAAGAAGAAAACAGAAGAAGAAAAAA	101:3694:1997 1:N:0:TAGCACC GGAGAAACCAAATTCCGGAGGCACCAAGTCAGACTCGGCATCTGATTCCCAGGAGATTAAAATTCAGCAG
2	+ #< <bbbfffffffffffffffffffffffffffffffff< th=""><th>FFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFF</th></bbbfffffffffffffffffffffffffffffffff<>	FFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFF
3	#< <bbffffffffffffffffffffffffffffffffff< th=""><th>FFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF</th></bbffffffffffffffffffffffffffffffffff<>	FFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	+ # <bbbfffffffffffffffffffffffffff< th=""><th>FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF</th></bbbfffffffffffffffffffffffffff<>	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
••		
••		100 bp read
••	•	Position = 15
5	0 million	Base = A Q score = 'F' (as ASCII, 70 in decimal)

Per base & Per sequence quality scores

Per base sequence quality

Positional box-and-whisker plot

Software: FastQC (Java 1.8)

Per sequence quality scores

Mean Sequence Quality (Phred Score)

Read Trimming & Filtering

Softwares: Cutadapt, Trimmomatic, etc.

- Adapter trimming
 - May increase mapping rates
 - Probably improves de novo assembly
- Quality trimming & Read filtering (erroneous base calls)
 - May increase mapping rates
 - May also lead to loss of information

1. Read quality

- 2. Alignment / Mapping
- 3. Gene count & normalization
- 4. Differential expression

Read Mapping to Reference Genome Reference-based RNA-Seq mapping

Sequence processing					
Alignment		<u> </u>	<u> </u>	} R	1.f <mark>astq</mark> 2.fastq
GATAGGTGTGACTACCGCCCCATGAAGCGGCACT	ACTAT GAGACGCAT GCTAACCCCGCCGCC	GATATATATACGCGACGATGACTATA Genome sequence	AT AGCT CGACT GCCAT GACAAAAGT GAAGCCGCATA	ATCTGCTGGGTA	

Human genome length = $3.3 \times 10^9 bp$

Release name	Date of release	Equivalent UCSC version
GRCh38 New	Dec 2013	hg38
GRCh37	Feb 2009	hg19 Old
NCBI Build 36.1	Mar 2006	hg18
NCBI Build 35	May 2004	hg17
NCBI Build 34	Jul 2003	hg16

Read Mapping to Reference Genome Reference-based RNA-Seq mapping

Splice aware-aligner

Release name	Date of release	Equivalent UCSC version
GRCh38 New	Dec 2013	hg38
GRCh37	Feb 2009	hg19 Old
NCBI Build 36.1	Mar 2006	hg18
NCBI Build 35	May 2004	hg17
NCBI Build 34	Jul 2003	hg16

Read Mapping to Reference Genome using STAR

- STAR (Spliced Transcripts Alignment to Reference) is a splice aware-aligner.
- STAR aligns RNA-seq reads to a reference genome using uncompressed suffix arrays.

Alignment – output file

SAM (Sequence Alignment/Map) File: A tab-delimited text file that contains aligned data information (human readable). BAM format is binary version of SAM format.

Each alignment line has 11 fields contain information such as

- Mapping position
- Mapping quality
- Segment sequence etc.,

1	QNAME	Query NAME of the read or the read pair
2	FLAG	Bitwise FLAG (pairing, strand, mate strand, etc.)
3	RNAME	Reference sequence NAME
4	POS	1-Based leftmost POSition of clipped alignment
5	MAPQ	MAPping Quality (Phred-scaled)
6	CIGAR	Extended CIGAR string (operations: MIDNSHP)
7	MRNM	Mate Reference NaMe (' = ' if same as RNAME)
8	MPOS	1-Based leftmost Mate POSition
9	ISIZE	Inferred Insert SIZE
10	SEQ	Query SEQuence on the same strand as the reference
11	QUAL	Query QUALity (ASCII-33 = Phred base quality)

Alignment stats summary by STAR aligner

RNASeq File ID: SL146145

Sample ID: iDP9

Lesch-Nyhan (iPSC)

A homozygous mutation in **HPRT1 gene** (c.508C>T; Exon 7)

Number of input reads = Uniquely mapped reads number + Number of reads mapped to multiple loci + **Number of reads unmapped from BAM**

Started job on Started mapping on Finished on Mapping speed, Million of reads per hour	 	Feb 10 16:43:39 Feb 10 16:49:45 Feb 10 18:16:40 39.45
Number of input reads Average input read length	 	57154438 200
UNIQUE READS: Uniquely mapped reads number Uniquely mapped reads % Average mapped length Number of splices: Total Number of splices: Total Number of splices: Annotated (sjdb) Number of splices: GT/AG Number of splices: GC/AG Number of splices: Non-canonical Mismatch rate per base, % Deletion rate per base Deletion average length Insertion rate per base Insertion average length MULTI-MAPPING READS: Number of reads mapped to multiple loci % of reads mapped to too many loci % of reads mapped to too many loci WMAPPED READS: % of reads unmapped: too many mismatches		52395014 91.67% 197.65 37757343 37017481 37386868 263606 29999 76870 0.46% 0.01% 1.55 0.01% 1.36 1915136 3.35% 25254 0.04%
% of reads unmapped: too short % of reads unmapped: other CHIMERIC READS: Number of chimeric reads % of chimeric reads	 	4.91% 0.03% 0 0.00%

analysis

- 1. Read quality
- 2. Alignment / Mapping
- 3. Gene count & normalization
- 4. Differential expression

Count the number of reads mapped to each gene

- In RNA-Seq, the relative expression of a transcript is proportional to the number of cDNA fragments that originate from it.
- Count the number of reads mapped to each gene.
- Software tools: HTSeq, Cufflinks, MULTICOM etc.,
 HTSeq
- Python code that converts aligned reads to counts
- Give <u>alignment file</u> and associated <u>transcript file</u>, and it will output a list of counts by feature.

Counts data by HTSeq filtering of genes

Remove lowly expressed genes

a gene is retained if it has 10or greater counts for at least25% of the samples.

26,490 -> 17,721 genes remained after filter

Gene	iDP9	iDP12	iTS2	iTS4	iMG3	iMG4
A1BG	195	228	207	233	142	131
A1BG-AS1	22	34	37	36	23	16
A1CF	8	8	14	16	17	16
A2M	81	72	55	36	49	107
A2M-AS1	34	28	118	69	60	24
A2ML1	446	460	83	97	335	347
A2MP1	1	1	6	8	5	4
A3GALT2	1	0	1	4	0	0
A4GALT	313	362	815	734	640	317
A4GNT	1	1	0	1	2	0
AA06	0	0	0	0	0	0
AAAS	3209	3382	3391	3443	3888	2772
AACS	3134	3235	1853	1874	3006	2725
AACSP1	12	11	82	56	31	2
AADAC	1	0	0	0	0	0
AADACL2	1	0	0	0	0	0
AADACL2-AS1	0	0	0	0	0	0
AADACL3	25	19	0	1	3	12
AADACL4	0	1	0	0	1	3
AADACP1	0	0	0	0	1	0
AADAT	828	703	1086	1102	982	882
AAED1	201	185	180	208	192	183
AAGAB	2505	2343	2279	2401	3221	2819
AAK1	1888	1747	1186	1131	1794	1864
AAMDC	429	506	565	638	526	328
AAMP	6000	5742	4680	4920	6981	5441
AANAT	13	11	11	13	19	9
AAR2	1669	1636	1670	1624	2051	1550
AARD	115	90	87	123	129	85
26490 genes						

Counts per million data

 Trimmed Method of M-values (TMM, Bioconductor package EdgeR)

"TMM" is the weighted trimmed mean of M-values (to the reference) proposed by Robinson and Oshlack (2010), where the weights are from the delta method on Binomial data. If refColumn is unspecified, the library whose upper quartile is closest to the mean upper quartile is used.

sample	group	lib.size	norm.factors
iDP9	LN	57925500	1.1010002
iDP12	LN	59649711	1.0504658
iTS2	LN	59491288	1.0735295
iTS4	LN	62872205	1.0482534
iMG3	Control	71008326	1.072294
iMG4	Control	55958843	1.117327
iPY5	Control	69161577	0.9692181
iPY8	Control	60218776	0.9487689
iAK2	Control	64587555	0.9914103
iAK3	Control	88089677	0.7580807
iTH29	LN	68281883	1.0151973
iTH30	LN	74956893	0.9140185

Counts per million data

Generate CPM data

 $= \frac{Counts \, per \, feature}{total \, reads} * \, 1000000$

Gene	iDP9	iDP12	iTS2	iTS4	iMG3	iMG4
A1BG	3.058	3.639	3.241	3.535	1.865	2.095
A1BG-AS1	0.345	0.543	0.579	0.546	0.302	0.256
A1CF	0.125	0.128	0.219	0.243	0.223	0.256
A2M	1.270	1.149	0.861	0.546	0.644	1.711
A2M-AS1	0.533	0.447	1.848	1.047	0.788	0.384
A2ML1	6.993	7.341	1.300	1.472	4.400	5.550
A4GALT	4.908	5.777	12.761	11.137	8.405	5.070
AAAS	50.317	53.974	53.096	52.241	51.063	44.335
AACS	49.141	51.628	29.014	28.434	39.479	43.583
AACSP1	0.188	0.176	1.284	0.850	0.407	0.032
AADACL3	0.392	0.303	0.000	0.015	0.039	0.192
AADAT	12.983	11.219	17.004	16.721	12.897	14.107
AAED1	3.152	2.952	2.818	3.156	2.522	2.927
AAGAB	39.278	37.392	35.684	36.431	42.303	45.086
AAK1	29.604	27.881	18.570	17.161	23.561	29.812
AAMDC	6.727	8.075	8.847	9.680	6.908	5.246
AAMP	94.079	91.637	73.279	74.652	91.684	87.022
AANAT	0.204	0.176	0.172	0.197	0.250	0.144
AAR2	26.170	26.109	26.149	24.641	26.937	24.790
AARD	1.803	1.436	1.362	1.866	1.694	1.359

Counts per million data

Generate log2(CPM) data

a	'DDC	DD10		1000	11000	31011
Gene	1DP9	1DP12	rTS2	rTS4	1MG3	1MG4
A1BG	1.614	1.865	1.698	1.823	0.902	1.070
A1BG-AS1	-1.520	-0.872	-0.778	-0.862	-1.709	-1.945
AICF	-2.952	-2.927	-2.165	-2.020	-2.139	-1.945
A2M	0.349	0.205	-0.209	-0.862	-0.627	0.778
A2M-AS1	-0.897	-1.150	0.889	0.071	-0.337	-1.367
A2ML1	2.807	2.877	0.382	0.561	2.139	2.473
A4GALT	2.296	2.531	3.674	3.478	3.072	2.343
AAAS	5.653	5.754	5.731	5.707	5.674	5.470
AACS	5.619	5.690	4.859	4.830	5.303	5.446
AACSP1	-2.381	-2.479	0.365	-0.229	-1.283	-4.804
AADACL3	-1.337	-1.704	-8.037	-5.719	-4.533	-2.353
AADAT	3.699	3.488	4.088	4.064	3.689	3.819
AAED1	1.658	1.564	1.497	1.660	1.337	1.551
AAGAB	5.296	5.225	5.157	5.187	5.403	5.495
AAK1	4.888	4.801	4.215	4.101	4.559	4.898
AAMDC	2.751	3.014	3.146	3.276	2.789	2.392
AAMP	6.556	6.518	6.195	6.222	6.519	6.443
AANAT	-2.268	-2.479	-2.506	-2.314	-1.981	-2.759
AAR2	4.710	4.707	4.709	4.623	4.752	4.632
AARD	0.854	0.526	0.450	0.903	0.764	0.447

Other methods used to normalize counts data by length of genes & total number of reads

- **RPKM** (Reads per kilobase of transcript per million reads of library)
 - Corrects for total library coverage
 - Corrects for gene length
 - Comparable between different genes within the same dataset
- FPKM (Fragments per kilobase of transcript per million reads of library)
 - Only relevant for paired end libraries
 - Pairs are not independent observations
 - RPKM/2
- TPM (transcripts per million)
 - Normalizes to transcript copies instead of reads
 - Corrects for cases where the average transcript length differs between samples

Normalize counts by length of genes & total number of reads

RPKM (Reads Per Kilobase per Million of reads)

$$RPKM = \frac{number of reads of the region}{\frac{total reads}{1000000} \times \frac{region \, length}{1000}}$$

 2000 kb transcript with 500 alignments in a sample of 55 million reads (out of which 50 million reads can be mapped)

$$RPKM = \frac{500}{\frac{50000000}{1000000} \times \frac{2000}{1000}}$$

1. Read quality

- analysis
- 2. Alignment / Mapping
- 3. Gene count & normalization
- 4. Differential expression

Lesch-nyhan disease specific iPSCs obtained from fibroblasts

Differential expression analysis for sequencing count data

The methods for differential gene expression analysis from RNA-Seq can be grouped into **parametric** & **non-parametri**c.

- When parametric methods are applied to differential gene expression each expression value for a given gene is mapped into a particular distribution, such as Normal, Poisson or negative binomial.
- Non-parametric methods can capture more details about the data distribution, i.e., not imposing a rigid model to be fitted.

STATISTICAL DISTRIBUTIONS - GAUSSIAN

- Gaussian (normal) distributions
 - nice and easy to work with
 - describe smooth distributions
 - underlie the t-test (among others)

If a continuous random variable has a distribution with a graph that is symmetric and bell-shaped and can be described by the equation

$$y = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sigma\sqrt{2\pi}}$$

we say that it has a **<u>normal</u>** <u>**distribution**</u>.

- The dispersion in this case is equal to the standard deviation
- You completely specify this distribution by the mean (μ) and the standard deviation (σ).

POISSON DISTRIBUTIONS

0.40 T

Poisson Distribution

•

•

•

- The dispersion in this case is equal to the mean (λ)
- You completely specify this distribution by the mean

NEGATIVE BINOMIAL

- Negative Binomial distributions
 - like a poisson but allows the variance to be different from the mean
 - often called "over-dispersed" poisson distribution
 - for very large numbers, this looks like a gaussian distribution

 The dispersion in this case is measured empirically from the data

RNA-Seq data fits a Negative Binomial distribution

 How do we know? Because, when you measure variance (per gene, between replicates), it's not equal to the mean, and it's not even a good linear fit.

HPRT1 expression pattern in iPSCs

	iPSC			FDR < 0.1 16 Genes
Gene	Fold Change	p-Value	FDR	1DK < 0.1, 10 Oelles
FAR2P1	-4.156	3.34E-08	0.0006	
PPIP5K1	0.504	2.27E-06	0.0193	
AAGAB	-0.243	3.21E-06	0.0193	
RNF39	2.027	8.57E-06	0.0381	
VDAC3	-0.114	1.06E-05	0.0381	Lesch-Nyhan [iPSC] - HPRT1 gene
FAXC	-0.633	1.57E-05	0.0472	
HPRT1	-3.011	1.92E-05	0.0494	Control/Clone_1 Control/Clone_2
LY75	1.712	2.63E-05	0.0517	Esch-Nyhan/Clone_1
MED6	-0.269	2.92E-05	0.0517	≥ 20 - Lesch-Nyhan/Clone_2
WASH3P	0.645	3.08E-05	0.0517	
ITIH4	0.873	3.52E-05	0.0517	
ALOX12B	0.825	3.67E-05	0.0517	
POMZP3	1.044	3.74E-05	0.0517	
MTRNR2L2	-1.215	4.67E-05	0.0576	Control Lesch-Nyhan
DLEU2	-0.617	4.80E-05	0.0576	
TUBB3	-0.668	6.92E-05	0.0778	

 HPRT1 gene expression pattern reveal how iPSCs retained a "memory" of their tissue of origin even after undergoing reprogramming.

THANK YOU

